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Abstract

LetA be a finite dimensional, unital, and associative algebra which is endowed with a non-degenerate
and invariant inner product. We give an explicit description of an action of cyclic Sullivan chord
diagrams on the normalized Hochschild cochain complex of A. As a corollary, the Hochschild coho-
mology of A becomes a Frobenius algebra which is endowed with a compatible BV operator. If A is
also commutative, then the discussion extends to an action of general Sullivan chord diagrams. Some
implications of this are discussed.
© 2005 Elsevier B.V. All rights reserved.

MSC: 16E40; 16W99; 13D03

1. Introduction

This paper is concerned with algebraic structures on the normalized Hochschild cochains,
mirroring those of String Topology. String Topology may be regarded as the study of the
algebraic topology of the free loop space of a manifold. Chas and Sullivan [1,2], showed
that the cohomology of the free loop space of a manifold has the structure of a BV algebra.
Building on Sullivan’s later work [13], Cohen and Godin [3] showed that string topology
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operations give rise to a two dimensional positive boundary TQFT. These were achieved by
looking at certain operations coming from what are known as Sullivan chord diagrams.

The Hochschild cochain complex of the singular cochains on a (simply connected) man-
ifold gives a model for the chains on the free loop space of that manifold. One expects
analogs of the above structures in a purely algebraic setting. Moreover, one is interested
in algebraic structures not only at the level of Hochschild cohomology, but also, and more
importantly so, at the level of Hochschild cochains. The Deligne conjecture, which has been
proved in [5,7,10,14-16], partly addresses this issue. It states that the chains on the little
disc operad act on the Hochschild cochain complex of an associative algebra. One relevant
question is whether the chains on the framed little disc operad, or equivalently chains on
cacti with marked points, act on the Hochschild cochain complex of a unital and associative
algebra which has an invariant non-degenerate inner product. This question has been affir-
matively answered by McClure and Smith and by Kaufmann; see [6,9,11]. The aim of the
present paper is to show that a much larger set of operations, with a richer internal algebraic
structure, act.

We give an explicit action of cyclic Sullivan chord diagrams (see Section 2 for definition),
which include the chains on the cacti with marked points, on the normalized Hochschild
cochain complex. More precisely, we show the following:

Theorem 3.3. Let A be a finite dimensional, unital, and associative algebra with a non-
degenerate and invariant inner product. Then, the normalized Hochschild cochain complex
of A is an algebra over the PROP, C,.%°, of cyclic Sullivan chord diagrams.

Corollary 3.4. Under the above assumptions, the Hochschild cohomology of A is a Frobe-
nius algebra endowed with a compatible BV operator.

Cyclic Sullivan chord diagrams do not account for the operation which reverses the
orientation of a loop. As it turns out, the concept of a Sullivan chord diagram is precisely
the generalization needed for labelling the orientation reversing operations, in addition to the
operations which are labelled by the cyclic Sullivan chord diagrams. In Section 4 we show
that this larger PROP still acts on the normalized Hochschild complex, if the associative
algebra A happens to be in addition commutative.

Theorem 4.3. Let A be a finite dimensional, unital, associative, and commutative alge-
bra endowed with a non-degenerate and invariant inner product. Then, the normalized
Hochschild cochain complex of A is an algebra over the PROP, C..%, of Sullivan chord
diagrams.

Corollary 4.4. Under the assumptions of Theorem 4.3, the Hochschild cohomology of A is a
Frobenius algebra, which is endowed with a compatible BV operator, A, and an involution
~. The operator A maps each eigenspace of ~ into the other, i.e. A(HH*(A; A)1) C
HH*(A; A)y, where HH*(A; A) 4 are the 1 eigenspaces of ~. The map ~ is both an

anti-algebra and an anti-coalgebra map. That is to say f — g =g — f, and Vo(f) =

Z(f)f”@)f’, where Vo(f) =3[ ® f".
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2. Cyclic Sullivan chord diagrams

In this section, we introduce a special kind of Sullivan chord diagrams, called cyclic
Sullivan chord diagrams. For them, one defines a boundary operator, a composition, and an
operation which corresponds to a certain relabelling. These diagrams yield a PROP, which
is called the PROP of cyclic Sullivan chord diagrams. We will discuss how the Frobenius
PROP, as well as the BV operad, sit inside the homology of this PROP.

A cyclic Sullivan chord diagram consists of a finite collection of disjointly embedded
planar circles which may be connected using a finite number of immersed planar trees. Such
a tree is called a chord. An endpoint of a chord lies on a circle. Different endpoints may lie
on the same circle, and even on the same point. However, there may exist circles to which
no chords are attached. The chords are not allowed to enter the circles. A chord has two
types of vertices, the inner vertices and the endpoints, where it meets with the circles. The
circles and the chords together form a graph (with possibly a collection of disjoint circles).
At a vertex of this graph, there is a natural cyclic ordering of the edges, which is induced
by the orientation of the plane. The cyclic ordering of the edges at each vertex gives rise to
a well-defined thickening of the diagram to an oriented surface with boundary. A diagram
of type (g; n,m) is one for which this surface is of genus g, and has n + m boundary
components, precisely n of which are inside the original circles. As part of the structure,
these boundaries, which are referred to as the inputs, are enumerated. Each input circle is
decorated with a marked point, called the input marked point, and is oriented in a clockwise
fashion. The remaining m boundary components, which are known as the outputs, are also
enumerated and decorated with output marked points. We reserve the term special point
for collectively referring to the input and output marked points, as well as to the chord
endpoints.

The thickened surface is merely an auxiliary tool for better picturing the input and output
circles. Mathematically, all that matters is the combinatorial structure of the cyclic Sulli-
van chord diagram. In fact, the input and output marked points are all physically placed
on the original circles. The chords are to be thought of as objects of length zero. Conse-
quently, an output marked point or a chord endpoint which is located at an endpoint of a
chord, may slide from that endpoint to an adjacent one along the perimeter of the output
circle.

The output circles are oriented as follows. The induced orientation of the surface from
the plane induces an orientation on its boundary components. This induced orientation,
which opposes the orientation of the input circles, should coincide with the orientation of
the output circles. Note that since the circles are oriented and the chords do not enter the
circles, at a vertex on a circle, there is a natural linear ordering on the set of chord endpoints
union the set of output marked points at that point. We would like to emphasize that in
this linear ordering output marked points may very well be positioned in between chord
endpoints, and are considered as part of the linear ordering.

The combinatorial dimension of a cyclic Sullivan chord diagram of type (g; n, m) is by
definition the number of connected components obtained by removing the special points
(chord endpoints, input and output marked points) from the input circles, minus n. We only
consider the cyclic Sullivan chord diagrams up to abstract combinatorial isomorphism of
graphs, sending input circles to input circles, mapping chords to chords, respecting special
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points, and cyclic orderings at the vertices. Consequently, the orientations of the input and
output circles should match as well.

Definition 2.1 (Cyclic Sullivan chord diagrams). Let Cy5“(g; n, m) denote the vector
space generated by the cyclic Sullivan chord diagrams of type (g; n, m) and of combi-
natorial dimension k, up to isomorphism. Let Cy. % (n, m) = @;O:O CrS“(g;n,m), and
CS(n,m) = Prey Ck S (n, m).

There is a natural boundary operator, 0, on C.%“ (n, m). By linearity, it suffices to describe
0 on the basis elements. Consider a basis element s € Cy%“(g; n, m). By removing the
special points (chord endpoints, the input, and the output marked points) from the input
circles of s, one obtains k 4+ n connected components. Since these oriented circles are
enumerated, there is a natural numbering of these connected components from 1 ton+k. Let
0(s) € Cx—1.9(g; n, m) denote the alternating sum of all cyclic chord diagrams obtained by
one at a time collapsing of each of the connected components to a point. Let us emphasize
that in this paper, in defining the boundary of a diagram, we collapse no chords or any
segments thereof. It is easy to verify that 0> =0. See the following example of the boundary
of a diagram.

©y © © O

8 |

:' o= :1 - j v+

Here the input circles are labelled by 1 and 2, and the output circle is labelled by 1’.
Throughout this paper, we label the input circles using numbers 1, 2, 3, ..., and the output
circles with 1/, 2", 3, ... . For the inputs, these numbers are written inside the input circles.
In case of an output, these numbers are written somewhere close to the diagram along the
perimeters of the appropriate output circles. In order to better see the output circles one
may, merely as a device, slightly thicken the cyclic Sullivan chord diagram to obtain an
auxiliary orientable surface with boundary.

There is also a naturally defined composition. By linearity, it suffices to define the com-
position o : C, S (k,1) @ Cx S (m, k) — CyF (m,l) on the basis elements. For two
such elements s € C,.¥“(k, 1) and s’ € C,.9“(m, k), we want to define s o s. For every
1 <i <k consider the ith output of s’ and the ith input of s. Each of these is a circle with
a certain number of vertices and a particular marked point on it. Starting from the marked
point of the ith input circle of s, one can read off the linear ordering of chords and output
marked points arranged around this input circle. After aligning the input of s with that of
s’, this linear ordering should be shuffled in between the previously existing chords of the
ith output circle of s” in all possible ways. The ith output circle of s” and the ith input circle
of s are now dissolved. With respect to the total ordering of vertices on chord diagrams,
for each chord endpoint or marked point of s which moves past an output marked point or
chord endpoint of s’, a sign factor of (—1) accrues. Summing over all possibilities gives
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rise to the desired composition. See the following example:

The input circles are labelled by 1 and 2, and the output circles by 1" and 2.

In the following composition example we consider a situation in which two output points
and three chord endpoints of s coincide with one of its input points. In the process of
identifying the corresponding circles, the marked point of the input circle of s, labelled by
1, is to be identified with the marked point of the output circle of s’, labelled by 1°. At this
point, it is important to keep track of the combinatorics of the chords and output points of
s, together with those of s’. The chords and the output points of s should be inserted all
together at one place in between those of s’, respecting the linear ordering.

If the combinatorial dimension of the composed object, s o s/, is less than the sum of those
of s and s’, then the composition is zero. This is precisely the situation in the following
composition.

oHeoR

One can check that the above differential is a derivation of the composition, i.e. the com-
position is a chain map between the corresponding chain complexes.

Relabelling naturally gives rise to a map from the permutation group S,, to Co.#“(0, n, n) C
Co-Y“(n, n), which induces an S,,-action on suitable chord diagrams. More precisely, such
a permutation corresponds to n disjoint circles in the plane, without chords, whose inputs
and outputs are numbered as prescribed by the permutation. The following proposition
organizes all of the above structures into a single mathematical object.

Proposition 2.2 (PROP of cyclic Sullivan chord diagrams). The collection Cy.%¢, of chain
complexes C.S“(m, n), for m, n > 1, together with the above composition rule is a PROP
in the category of chain complexes. The tensor product is the disjoint union.

This PROP is referred to as the PROP of cyclic Sullivan chord diagrams.
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Example 2.3. Let’s look at the following four chord diagrams.

’
N ; ,
\ N P 2

! \
! ’
\\\1 r

Note that —e Cop.#“(2, 1) and * € C1.9°(2, 1). In each case the input circles are labelled
by 1 and 2, and the output circle by 1. Similarly, Vo € Co.#“(1,2) and v € C1.9*(1, 2).
Each input is labelled by 1, and the output circles are labelled by 1” and 2’. The notation —
was taken from [4], and V¢ and Vv are borrowed from [12].

Observe that — and Vv are both closed elements. It is straightforward to check that these
elements satisfy associativity and coassociativity,

— o(— Qid)=— o(id® —)
and
(id ® Vo) o Vg = (Vo ® id) o V.
Here id € Co°(1, 1) is the cyclic Sullivan chord diagram consisting of one circle without
chords, whose input and output marked points coincide.
Let 15 € Cp9°(2,2) denote the element that switches the labelling, as defined by the
map S, — CoF°(2,2). Itis easy to see that
A= — —(— or)
and

(V) =V — (12 0 Vo).

This implies that after passing to homology, — and Vv are commutative and cocommutative,
respectively. Finally, a word about the Frobenius compatibility conditions. We have,

Voo — =({d® —) o (Vo ®id) =13 0 (— ®id) o (id ® (12 0 Vy))
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Since V is cocommutative on homology, this equation implies the Frobenius compatibility
condition at the level of homology.
If we define

A =

then 42 =0 (see p. 5), and one may ascertain that the BV relation is satisfied on homology;
see [1, Section 5].

Ao — o(— ®id) ~— o(do — Rid)+ — o(id ® Ao —)
+ — o(do — ®id) o (id ® 12)+ — o(— ®id) o (4 Q id ® id)
+ —o(~®id)o(idR® AR id)+ — o(— ®id) o (id ®id ® A).

Similarly, the dual coBV relations are satisfied. That is to say,

(Vo®id)oVvogod >~ (Voo Ad®id)oVy+ (id ® Voo A) oV
+(d®1)o(Vopod®id)oVog+ (AR®id®id)o (Vog®id)o Vo
+(dQRAR®id)o (Vog®id)oVy+ (idR®id® A) o (Vo ®id) o V.

This, however, turns out to be true for more trivial reasons. Each individual term of the
above equation is in fact homologous to zero.

Comment 2.4. Vector spaces generated by diagrams of type (0; n, 1) whose chords in the
plane do not cross are closely related to the operad of cacti. In a cyclic Sullivan chord
diagram, collapsing each chord to a point gives rise to a cactus. In fact, the operation of
collapsing chords establishes an isomorphism of operads.

3. The associative case

Now that the PROP of cyclic Sullivan chord diagrams is built, we want to make it act.
Let us first recall a few relevant notations and definitions.

Let (A, -, 1) be a finite dimensional, unital, and associative algebra over a ground field k. A
and A* are both examples of A-bimodules. More precisely, the left and right multiplications
give A an A-bimodule structure. The A-bimodule structure of A* := Hom(A, k) is given by
(aj.a*.az)(a3) := a*(ar - a3 - ay), forany aj,az,az € Aanda™ € A*. Letff: A —> A*
be an isomorphism of A-bimodules whose inverse we denote by y : A* — A. Define an
inner product (—, —) : A® A — k by (a1, a2) := (f(a1))(a2). It is easy to verify that
f is an A-bimodule isomorphism, if and only if, (—, —) is a non-degenerate bilinear map,
satisfying

(a-b,c)=A{a,b-c)
(a-b,c)=(b,c-a)

This implies that the map (ay, ..., a;) — (a;-...-a, 1) is invariant under a cyclic rotation
ofai,...,a,ie.
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(ar-...-ar,1)=(ay,-ay-...-ar—1,1). (1)

Let us recall the definition of the normalized Hochschild cochain complex and that of
the endomorphism PROP.

Definition 3.1 (Normalized Hochschild cochain complex). Let M be a A-bimodule. The
Hochschild cochain complex of A with values in M is the graded vector space HC *(A; M) :=
[T.>0 Hom(A®", M), endowed with the differential

O(Nat,....ay) :=a1.f(az, ..., an)
n—1
+Y (=1 flar,... a5 ajpn, .. an)
=1
+(=D"- flay, ..., ap_1).ay,

where “.”” denotes the left and right module structures. A straightforward check shows that
& = 0; see e.g. [8, 1.5.1].
The normalized Hochschild cochain complex of A with values in M is the subcomplex

HC*(A; M) :={f € HC*(A; M)|f (a1, ..., a,) =0 if one of the a; = 1}

It is a well-known fact that the inclusion HC*(A; M) < HC*(A; M) is a quasi-
isomorphism; see e.g. [8, 1.5.7].

The bimodule isomorphism f§ : A —g> A* induces an isomorphism of chain complexes

B, : HC*(A: A) = HC*(A; A*), where B,(f) := fo f.

Definition 3.2 (Endomorphism PROP). Let V be a differential graded vector space over k.
The endomorphism PROP of V is collection of differential graded vector spaces &ndy (k, [)
:= Hom(V®, V®). Themap Sx — &ndy (k, k) is givenby 6(v1®- - -@ug) 1= (= 1)lvyy®
-+ - ® Vg(k), and the composition o : &ndy (k, 1) ® Endy (m, k) — Endy (m, 1) is defined
by

(FoG)(1,...,vm) :=F(G(vy,...,vm)). 2)

Theorem 3.3. Let A be a finite dimensional, unital, and associative algebra with a non-
degenerate and invariant inner product. Then, the normalized Hochschild cochain complex
of A is an algebra over the PROP, C,.%°, of cyclic Sullivan chord diagrams.

Corollary 3.4. Under the above assumptions, the Hochschild cohomology of A is a Frobe-
nius algebra endowed with a compatible BV operator.

Proof of Theorem 3.3. The objective is to establish a map o : C,.° — @@”dTC* 4:4)
which respects the differentials, composition, and symmetric group action. We will achieve
this in four steps.

Step 1: Construction of o
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We need to define maps
Co.(k,1) ® HC*(A; A)®* — HC*(A; A)®'.

Let s € Co.¥°(k,D), and fi,..., fx € HC*(A; A)=~HC*(A; A*). Each f; : A®% —
A*f may be regarded as an element of (A")®" @ A* and therefore be written as f; =
(T ci”H). In order to define (a(s))(f1,..., fx) € HC*(A; A)®! proceed
as follows:

(a) Consider the cyclic Sullivan chord diagram s and place f; = (c’i, e, cﬁ,i; Ciu +1), for
i=1,...,k, inside and around the ith input circle of s. To be more precise, at the ith
circle of s, start at the input marked point with the last element C;z,- 41 and proceed with
c’i, cé,. e cf” in the clockwise direction along the input circle; see figure below.

Next, take the sum over all possibilities of placing the output marked points and
the chord endpoints on different c’j ’s, while respecting the cyclic ordering of the chord
endpoints and output marked points.

(b) If none of the cj s has more than one special point attached to it, then go to the next step.

Otherwise, if some c;s have several special points attached to them, then use the dual
of the product — - —: A® A — A to pull things apart. More precisely, if there are r
such things coming together at a c’j, we replace c’j by

(A®id®" ™o o (A@id)oA(c)) =) ()@ ()" ® & ()T
)

Here we have used Sweedler’s notation 4 : A* — A*® A*, A(c) =)' ®c". Inthe
proof of Theorem 3.3, c% is replaced by
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If an input marked point is also involved, it can be placed anywhere in between the
above linear ordering of chord endpoints and output marked points. The independence
from this choice is argued in the next step. Now that some ci/.s are expanded, relabel
them so that the last one is again placed at the input marked point. Let us use the same
notation Cf’l,' 1 for the new last element.

Note that now input marked points do not coincide with any output marked po-

ints or chord endpoints. We evaluate cf“ 41 on the unit, to obtain cil[_ +1(1) € k.

In the above picture we obtain c% (1) and cg(l). The ambiguity of where to place
the input marked point, which came up in our previous step, is of no issue because
the output marked points and chord endpoints are linearly ordered, and the
input marked point is evaluated on the unit, 1, which is in the center
of A.
We now deal with the cj.s which are placed at the chord endpoints. The cyclic ordering
at each vertex of the chord induces a cyclic ordering of the chord endpoints. In the proof
of Theorem 3.3, two of the chords have the endpoints (c%, cé, C%O), and (cg, cg, cg ) up
to cyclic permutation.

We will multiply these elements in this cyclic order and evaluate it on the unit. To be
more precise, if c'jll e c’]rr are the endpoints of the chord arranged in the cyclic order,
then we obtain the term,

() (e, 1)

(see Eq. (1) on p. 8). Here y : A* — A is the inverse of the A-bimodule isomorphism
p:A— A%,

For each of the [ output circles of s, we look at its marked point. Following the orien-
tation of the output circle, we linearly read off the leftover c; s (the ones which did not
correspond to input marked points or chord endpoints) so that we end with the element at
the output marked point. For instance, in the proof of Theorem 3.3, the 1’st output circle
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gives rise to the term,
5 5 3 2 5.5
(C17C29C95C6ac6ac7)'

(f) There is an overall sign factor which is obtained in the following way. Note that, using
the ordering f1, ..., fk, the c’js can be linearly ordered,

1 1.1 k k .k
(cl,...,cn],an_l),...,(cl,...,cnk,cnk+1). 3)

The ¢i’s, for 1< Jj <nj, are considered to be of degree 1, whereas cf” 11 is regarded as
of degree 0. Thus, f1 ® - - - ® fi has a total degree of 1 + - - - + ny. Having this in mind,
the operation o(s) can be obtained by the following two steps.

First, the cij’s which correspond to chord endpoints are to be evaluated using the in-

ner product. These do not contribute to the output total degree. Similarly, the c’.’s
which correspond to the output marked points change their degree from 1 to 0, be-
cause they are to be positioned as the last entry of a Hochschild element. The input
marked points Ciz,— 41 of degree 0 are evaluated on the unit, and do not change the total
degree. We see that a(s) changes the degree by the number of special points on the
input circles, minus k. This change of degrees is obtained by applying a tensor product
of shift and identity maps to expression (3), where the shift and identity maps have
degrees 1 and 0, respectively. In doing so, the usual sign rule applies. That is, when-
ever something of degree r moves past something of degree s, a sign of (—1)" is
introduced.

The second step is to rearrange expression (3) according to the combinatorics of the
output circles of s. This means that blocks of cj.’s have to move past other blocks of

cj"s. We introduce a sign of (—1)"* for each block of degree r moving past a block of
degree s.

Step 11: o is well-defined

To ensure that the above procedure yields a well-defined map, the following checks are
in order. We first deal with the fact that output marked points and chord endpoints may
slide along chords. For example in the chord diagram in the proof of Theorem 3.3, the 4'th
marked point may be put at c% instead of cé, while respecting the cyclic ordering of the
chord. But we can check that

D@ - 7((eD)) - 7)) ) - ()" (1) - (€5)" (@)
(€ (cly)
= (9(c3) - @ p(cd) - p(cio), 1)
= Y D) ped) -9l 1) - () (D) - (c3) (@)

(). ()
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for all @ € A. Also, a chord may slide along another chord, which does not change the
outcome because:

Z(... () () () )
()

=Y (@) ) 1 (@) T

Thus, the example in the proof of Theorem 3.3 yields the following term in expression

for a(s)(f1, ..., fr):
> (e S e @) (1 @)@ (174:c))
(eD).(ed).(c}p). (). ()

1 1 1 3 3 3 3 4 4 4 4 4 5 2 2 1 3 2 2 .1\
®(Cﬁ,Cl,Cz,C4,C5,C6’C7,C1,Cz,C37C47C5,C4’Cg’C1,C4,C17C3»C4, (55) )

cep (1) - e (1) - (e3) (D) - () (1) - ()"(1) - (p(e3) - p(e3), 1) - (p(ch) - p(ed), 1)

() - p((€)) - p(e), 1) - (p(e3) - p((ed)) - p((cip) ). 1)

(D)) (D)) 7)), 1) - (D)) - 9(ed), 1) 4)
Here,e=24+44+74+104+12+154+164+21+30+32)+ (2-20+1-14+1-7+1-
19+1-34+4-6+5-6+1-6+1-4+1-2+2-2)=0(mod 2), and 174+ denotes the
unit in the tensor algebra TA*. Note that we could use

D (@) (') =3,
)
D @) (1) - () - p((e)) - 7(ed), 1)
(c®)
= (p(cd) - 7(cd) - (D), 1),
D (o)) (5(ed) - 7)) - (i), D) - (eh)”
(CONGE)
= (p(c3) - — - (cd) - (cip), 1) € A%,

where

(e - = pedy -9 1) e () - e ped) -y, 1)

and other identities to simplify this expression.
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It remains to show that this well-defined map, o : C.¥ — Endm~= HC (A:4)° , respects the
differentials, composition, and symmetric group action. It must be clear that the symmetric
group action is respected, since it simply has to do with relabelling.

Step 111: o respects differentials

The boundary operator, D, on &nd—+~= HC (A: ) is given by pre and post compositions

with the boundary operators on the domain and the range. More precisely, for o(s) €

é’ndHC (4:4) (k, 1), we have the following:
k . .
D) (fi, - fi) =Y as) o (d®V" V@5 @id*“ ) (fi,..., fi)
j=1
l . .
— (=DM Y 1d®IV @ 6 @id® ") o als)(fi, ... fo),
j=1
(%)
where f; = (c’i, R cﬁ,i; c;'”_H) € HC*(A; A), and |s| denotes the degree of s. Here,

0 = 01 + 02 is the boundary operator on HC*(A; A), which is given by applying the
comultiplication 4 : A* — A* ® A* to all c’j’s as follows.

Si(ch, el M)—ZZ( DI (@) (e )

1
Jj= (c_,

So(ch, o chich )= Y (=DM () ()
(cni+1>
+ (D" ) e )
Forans € C,%¢, let us compare D (a(s)) with a(0(s)). The right-hand side of Eq. (5) is of
the form S + 71 + T, where

k
S=>"as)o (d® D @@ id® D) (fi..... fi).
j=1

!
T =—(=DF Y (d® D @6 ®id®* D)o a(s)(fi. ... fi),
j=1
!
Ty = (=DM 1d® "D @ 6, @ id® ") o als)(fu. ... fo).
j=1
Each term in S is obtained by first applying 4 to a c;, and then placing special points of

o on the outcome in all possible ways as described in Step . In doing so, there are terms
in which none, one, or both of the tensor factors of A(c}) = Z(Ci.)(clj)/ ® (c’j)/ " come in
J
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contact with the special points. For the purposes of this proof, refer to these terms as Sp,
S and Sy, respectively. It is easy to see that a(0(s)) = Sy. Note that the alternating signs
which appears in the definition of the boundary operator corresponds to those arising from
the fact that if an element c; is at the rth one of the |s| + k special points on the input circles

of s, then |s| + k — r shift maps move over an additional factor of (c;)/ , giving rise to the
appropriate sign. It is also easy to see that So = —T77. It remains to understand what happens
with S and 73. The claim is that S| = —7>. Seeing this is a bit less straightforward, since
some of the terms in S| cancel amongst themselves, whereas other terms cancel with 75.
The following helps to better understand the situation. Consider a simple diagram in which
the special points do not coalesce, and let us concentrate on an element in Sy. If an output
marked point is placed on one of the factor in 4, then it corresponds exactly to a term in 75.
If an input marked point is placed on one of the factor in A4, then it cancels out with a similar
term of S;. This is because for a single input marked point, we are dealing with evaluation
on the unit, and the two termsz(c;)((cf/)’(l)) ® (c;)// :cf/ and Z(cj,) (cj.)’ ® ((c;)//(l)) 203

cancel. Note that in one of the two expressions the shift map has moved past (cj)/ , giving
rise to a desired negative sign. Now consider the case in which a single chord endpoint is
attached to one of the tensor factors, for example, (ci.)’ ’. Follow the cyclic ordering of the
chord’s endpoints to go the next chord endpoint which is attached to, let’s say, c/ . In this
case the term involving (c )" cancels out with a term in the sum where cq is spht and the
chord is attached to (cq)

In other words, we use the algebraic fact that

D) )y ey -
)
= (o) ) - D ()
()

Note that the signs become opposite when applying 4 to ci on the left side of this equation

and moving (c )’ to the spot of cq , instead of applying 4 to cq
Now, if several special points coalesce, then we can do the same steps as above in the
cyclic order specified at this point. One can slide the tensor factors of ) ) (c j) ® (c j)” ®
J

- ® (ci.)(’) which are not attached to anything from one side to the other in order for them
to cancel out.
Step IV: o respects compositions
Let us argue why o respects the composition. Let s € Co.#“(k, [) and s’ € C.F“(m, k),
and consider the composition s o s' € C,.%“(m, ). Recall that we have to identify the
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Jjth output circle of s’ with the jth input circle of s starting at the respective marked
points; see p. 4. We need to show that a(s o s") = a(s) o a(s’), where the composition

in (Endﬁ(A 4 is given by (2) in Definition 3.2. Thus, for a(s) o a(s’), we need to apply

a(s) to the output a(s")(f1,..., fm) € H_C*(A, A)®k. Assuming again that each f; is of
the form f; = (c},....c}.: Cit,-+1) € (A")®" ® A*, we see that the k tensor factors of
a(s")(f1, ..., fm) consist of c;. ’s following the direction of the outputcircles of s/, together
with some coefficients, compare (4). We need to apply a«(s) to this, which means that output
marked points and chords need to be added to the k tensor factors of a(s")(f1, ..., fn) In
all possible ways. Thus one sums over all possibilities of placing output marked points (see
item (b) in the proof of Theorem 3.3), and chord endpoints (see item (c) in the proof of
Theorem 3.3) on the c;. ’s according to the combinatorics given by s. But this means exactly
that we apply chords and output marked points at the points specified by the composition
s o s'. Since everything is graded, and we have to move the same number of elements past
each other to obtain the same expression, we also obtain the same overall sign. Notice that
this argument also works if several special points coincide at some point, since this only
means that the coproduct 4 has to be applied to c;; see item (d) in the proof of Theorem
3.3. The above arguments can be applied to all c;’s of the k factors of a(s)(f1, ..., fm),
which are not output marked points. Now, let ¢ € A* represent one of the output marked
points. The definition of «(s) in item (a) on p. 11 requires to apply the unit 1 to this element
¢. Note that & might either be a factor of some coproduct—such as (c3)’, (¢5)"”, (c3)” and
(c%)’ "in Eq. (4)—or not.In the first case, we can completely eliminate this marked point by
using the algebraic fact

Y E) @ @ )P )"
()
= Z(c;.)’ ® (c;)” Q- ® (Cz_)(rﬂ)
)

In the second case, we apply the unit 1 to some 5=c;, where 1 < j <n;.Butin the normalized
Hochschild complex, we have f;i(...,1,...) =0, or cj.(l) = 0. Thus, the composition
vanishes. This is consistent with the fact that s o s’ = 0, since the dimension of s o s’ is less
than the sum of the dimensions of s and s'; see p. 5.

We have shown that the action of a(s) o a(s’) is the same as the action of a(s o s’), and
this completes the proof of the theorem. [J
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4. The commutative case

Throughout this section A denotes an associative, commutative, and unital algebra, which
is endowed with a non-degenerate invariant inner product. We describe how the PROP of
cyclic Sullivan chord diagrams, C..%¢, can be enlarged to include orientation-reversing
chords in the action. Thickening such a chord gives rise to a non-orientable surface with
boundary. This enlarged PROP, denoted by C,.%, will then act on the Hochschild complex
of the algebra A.

Observations 4.1. (i) Define the orientation-reversing operation
~:HC*(A; A) — HC*(A; A)
~fe f
~ n(n+1)
f(alvaz""va)’l*lvan) = (_1) 2 'f(ansanfls""a29al)

One can check that (5(f) - (5?]-;))(611, ..., dpy1) is equal to
n
Z :I:f(a,,_H, ey ajaj_H — aj_Haj, ey al)
j=1
(a1 flaz, ... an41) — fa2, ..., any1) - ar)
+ (ant1- flar, ..., an) — f(ai, ..., an) - any1).
Since A is commutative, this expression vanishes. This means that for commutative A the
map ~ is a chain map of the Hochschild complex into itself. The operation ~ can be obtained
from the following chord diagram, where we insert a string of elements in one direction, and
read them off in the opposite direction. We refer to this diagram as the orientation-reversing
chord diagram.

chord operation

Note that this chord diagram is a closed element in the complex of chord diagrams, as
defined in Section 2.

(i1) Let’s look at the brace operation * from p. 6. For f, g € HC*(A; A) we have
(f * g)(alv MR an)
= Z :I:f(al9 LICIO ) ak! g(ak-Fl’ ey ak+l)9 ak-‘rl-‘rls ) an)~
k
We now want to allow reversing of orientations, as described in (i). For example the

operation f * g, defined below, is also legitimate. In this case (f * g)(ai, ..., ap) is
equal to

A f@n ki 8@kt @D, Gk a).
k
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Note that the elements plugged into f are reversed, while those plugged into g have
preserved their linear ordering. The following figure shows that this phenomenon can
be expressed by considering diagrams with twisted chords.

These two observations demonstrate all the new features of diagrams describing orientation-
reversing operations. Chord diagrams with possible twisted chords form a PROP which acts
on the normalized Hochschild cochain complex of A. The relevant definition and its appli-
cation to the normalized Hochschild cochain complex will occupy the rest of the paper.

Definition 4.2 (Sullivan chord diagram). A Sullivan chord diagram is a generalization of
a cyclic Sullivan chord diagram, where chords may have twists in them and the orientation
of output circles may be arbitrary.

Note that, when moving along an output circle, one may alternate between going in the
direction compatible with those of the input circles, and the opposite direction. This is
shown in the below figure, where the direction of 1’st output circle is compatible with that
of the 1st input circle, but in opposition to that of the 2nd input circle. A similar remark
applies to going along the input circles, as seen for example the 1st input circle.
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We also remark that Sullivan chord diagrams are considered up to abstract isomorphism
of the thickened surfaces respecting all labelling and orientations (see figure below).

In particular, a chord with two adjacent twists is identified with a chord without a twist.
Also, note that the relations among diagrams, such as sliding along a chord, now have to
respect the twists of that chord (see figure below).

C

These more general diagrams are made into a PROP, denoted by C..#, similarly to the
case of C,.%¢ described in Section 2. In fact, the tensor product, the symmetric group action
and the differential are exactly the same. As for the composition, the following comments

[ @ |
9090

orientation-reversing

Consider the situation of a composition s o s’, where the orientation of an output circle of
s’ is opposite to that of the corresponding input circle of s. When applying the definition of
the composition from Section 2, we need to follow the orientation of the output circle and
identify it with that of the corresponding input circle. In the above picture, this is achieved
by flipping an input circle, which has introduced twists in some of the chords. In general,
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while sewing input to output, one needs to give chords an extra twist, if the orientations do
not match.

Theorem 4.3. Let A be a finite dimensional, unital, associative, and commutative alge-
bra endowed with a non-degenerate and invariant inner product. Then, the normalized
Hochschild cochain complex of A is an algebra over the PROP, C.%, of Sullivan chord
diagrams.

Proof. The description of the map o : C,.’ — ﬁndTO (4:4) is identical to that of the

previously established action o : C,.9¢ — gndfC*(A 4 in the associative case. It remains
to show that o is a map of operads. One can see that 7 resects composition for the same
reasons « did. In fact, commutativity of A does not play a role in this. Commutativity of A,
however, plays an important role in showing that o respect the differentials. Recall that for
s € C,.., formula (5) describes the differential D(a(s)). There are two cases to consider.

In case there is at most one binding tensor factor of A(ci.) = Z(C,-.)(c;)’ ® (ci-)”, the terms
J

in (5) cancel each other. This is due to the new feature .of commutativity of A, as seen in
observation [4.1(1)]. In case both tensor factors of A(c’j) are bound, we obtain the terms
which correspond to (0(s)). O

Note that the chord associated to the orientation-reversal ~ squares to the identity, (~ )*>=
id. Therefore, HC *(A; A) decomposes into the eigenspaces HC *(A; A) @ HC*(A; A) _,
where

HC*(A; A)y =spanfc1 @ -+ Q@ cpn @a+ (—1)°c, ® -+ - Q@ c1 @ a},
HC*(A; A)_=span{c1 ® - ®c, ®a— (—1)’c, ® - ®@ ¢ ®al,

wherec; € A*,a € A,and ¢= w The operator 4 maps each eigenspace into the other,

ie. 4 (HC*(A; A)i> C HC*(A; A)z. In the notation of Example 2.3, ~ anticommutes
with 4, i.e. ~ o4 = —Ao ~. Moreover, we have ~ o — = — o1p 0 (~ ® ~) and
(~ ® ~) o130 Vo= Voo ~. Since ~ commutes with the Hochschild boundary operator,
we have:

Corollary 4.4. Under the assumptions of Theorem 4.3, the Hochschild cohomology of A isa
Frobenius algebra, which is endowed with a compatible BV operator, A, and an involution
~. The operator A maps each eigenspace of ~ into the other, i.e. A(HH*(A; A)y) C
HH*(A; A), where HH*(A; A) 1 are the 1 eigenspaces of ~. The map ~ is both an

anti-algebra_and an anti-coalgebra map. That is to say f — g = g — f and Vo(f) =
2t ® fl where vo(f) =3 f' ® f".
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