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Abstract: This paper generalizes Bismut’s equivariant Chern character to the setting of
abelian gerbes. In particular, associated to an abelian gerbe with connection, an equiv-
ariantly closed differential form is constructed on the space of maps of a torus into
the manifold. These constructions are made explicit using a new local version of the
higher Hochschild complex, resulting in differential forms given by iterated integrals.
Connections to two dimensional topological field theories are indicated. Similarly, this
local higher Hochschild complex is used to calculate the 2-holonomy of an abelian gerbe
along any closed oriented surface, as well as the derivative of 2-holonomy, which in the
case of a torus fits into a sequence of higher holonomies and their differentials.
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1. Introduction

In [B], Bismut introduces the equivariant Chern character of vector bundle with con-
nection over a manifold, E → M . This is done via analytic means, which results in a
periodically closed form on the free loop space of the base of the bundle. The idea for
constructing such a class was to provide a twisted counterpart for the view, suggested
by Witten and carried out by Atiyah [A], that the index of the Dirac operator, given by a
path integral over the loop space, can be calculated by stationary phase approximation
of an invariant symplectic form on the loop space of the manifold. Bismut’s equivariant
Chern character is the contribution to the integrand of this path integral over the loop
space, necessary to take into account the effects of the connection on the axillary bun-
dle used for twisting the Dirac operator. Thus, localization techniques, that gave rise to∫

M Â(T M) in the untwisted case, would now yield
∫

M Â(T M) ∧ Ch(E), as expected
by the classical index theorem of the twisted Dirac operator.

More recently in [Ha], the Bismut Chern character has appeared in the passage from
a 1|1 supersymmetric (SUSY) field theory on M , determined by a connection on a vector
bundle on M , to a 0|1 supersymmetric field theory on L M . This work relies on construct-
ing a SUSY field theory out of a vector bundle and a superconnection as described in
[D]. Naively, a bundle and a connection can be thought of as a 1-dimensional field theory
in which to zero dimensional objects, points, one assigns a vector space, the fibre of the
bundle above the point, and to one dimensional objects, paths in M , one assigns a map
between the vector spaces assigned to the end points. In [D], this scheme is generalized
to 0|1 dimensional objects, super points in M , and 1|1 dimensional objects, or super
paths in M . Furthermore, by thinking of the space of maps R

1|1 → M as the space of
maps R

0|1 → {R1|0 → M}, one can get from a 1|1 theory on M to a 0|1 theory on the
space of paths in M and similarly L M , as described in [Ha].

Further work is on the way, as part of the general Stolz and Teichner program ([ST])
of understanding the concordance classes of supersymmetric field theories, to construct
2|1 supersymmetric field theories associated to gerbes, in much the same way 1|1 theo-
ries were constructed out of a bundle endowed with a superconnection, see [D]. One can
then interpret such 2|1 theory on M as a 0|1 theory on MT, the space of maps from the
torus T to M , using the adjunction {R2|1 → M} � {R0|1 → {R2|0 → M}}. We learned
this picture from P. Teichner and S. Stolz.

Inspired by such connections to supersymmetric and non-supersymmetric field the-
ories, we address the naturally arising question of the extension of the holonomy of an
abelian gerbe to a torus equivariant class on the mapping space of the torus T into M .

In [GJP] the authors reinterpret Bismut’s construction using the Hochschild complex
of matrix valued forms, given an imbedding of the bundle and connection into a trivial
bundle. This work shed light on the Bismut class and gave a specific Hochschild cocy-
cle manufactured from the connection and its curvature. This class produced was later
shown in [Z] to be independent of the imbedding and connection.

In this paper, as a warm up, we review and provide a conceptual and more funda-
mental, pre-trace, interpretation of this construction in terms of holonomy, its covariant
derivative, and other naturally constructed higher degree forms and their covariant deriv-
atives. More explicitly, we think of holonomy, hol ∈ �0(L M, E), as a section of the
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pullback of the endomorphism bundle on the free loop space via the map that sends a
loop to its base point,

E ��

��

End(E)

��
L M

ev0 �� M

This bundle on the loop space has an induced connection with respect to which we can
take the covariant derivate of the holonomy as a section. The result is a 1-form on the
free loop space with values in this pullback bundle. We then show that there is a naturally
defined 2-form with values in this bundle whose contraction with the natural velocity vec-
tor field on the loop space is the covariant derivative of the holonomy. One then asks what
the covariant derivative of this naturally defined 2-form is, and the answer turns out to be
a 3-form which itself is given by the contraction of a naturally defined 4-from on the loop
space. This process continues ad infinitum to produce an infinite sequence of naturally
defined even degree forms on the free loop space, starting with the holonomy 0-form,

Theorem 2.18. For all k ≥ 0 we have forms hol2k ∈ �2k(L M, E), where hol0 = hol
is the holonomy, such that

∇∗hol2k = −ιthol2k+2 ∈ �2k+1(L M, E).
where ιt is contraction by the natural vector field on L M given by the circle action.

The result can be repackaged as something whose covariant derivative is basically
the same as its contraction with respect to the canonical vector field on L M . One notes
that trace of the covariant derivative of a form with values in the pulled back bundle is the
same as the exterior derivative of the trace of the form. This is due to the simple fact that
the induced connection on the endomorphism bundle is obtained from the connection
on the bundle using a commutator and that trace is zero on the commutator of matrices.
Therefore, by applying trace to the above construction, one obtains an equivariantly
closed form which is in fact equal to the Bismut class.

Corollary 2.19 ([B,GJP]). For Ch(u)(E; ∇) := ∑k≥0 u−khol2k , where u is a formal
variable of degree 2, we have, that

(∇∗ + u · ιt)
(

Ch(u)(E; ∇)
)
= 0.

We emphasize that this last result is derived in Sect. 3 using a local version of the
Hochschild complex, which is suitable for the local data of a bundle with connection,
see Theorem 3.14 and Corollary 3.15. It is this local version that we generalize to the
case of abelian gerbes with connection.

The second part of this paper (Sects. 4 and 5) comprise an analogous discussion for
the 2-holonomy of an abelian gerbe. Namely, starting with an abelian gerbe on M , and
given a fixed closed oriented surface �, one can consider 2-holonomy as a real valued
function on the mapping space M� . We again use a local version of (higher) Hochschild
complexes, which are suitable for the local data of an abelian gerbe with connection.
Note that the situation is in some sense simpler than in the case of the bundle, since
2-holonomy is now complex valued. This is due to the fact that we are considering
abelian gerbes, which are higher analogues of 1-dimensional vector bundles.
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Section 4 considers the case of the torus � = T, where we regard 2-holonomy as
a real valued zero form on the mapping space, hol ∈ �0(MT), so that one can ask
what is its exterior derivative. We show that the result is a 1-from on MT which is the
contraction of a naturally defined 2-form on MT, with respect to a Killing vector field
on the torus. There are many such 2-forms: one for each choice of the Killing vector
field on the torus. Similarly to the bundle case above, we give a hierarchical construction
which extends 2-holonomy to an equivariantly closed element on the torus mapping
space. More precisely, we obtain the following theorem and corollary.

Theorem 4.17. For all k, � ≥ 0, we have forms hol2k,2� ∈ �2k+2�(MT), where hol0,0 =
hol is 2-holonomy, such that

d(hol2k,2�) = −ιt(hol2k+2,2�) = −ιu(hol2k,2�+2),

where ιt and ιu are contraction by the two natural vector fields MT given by the two
circle actions from the torus T = S1 × S1.

Corollary 4.18. For a + b = 1 we have

Ch(G, a, b) :=
∑

k≥0,�≥0

ak · b� · hol2k,2� ∈ �(MT)inv(t+u)

is a closed element, that is, (d + ιt + ιu)(Ch(G, a, b)) = 0.

In this description of the equivariant Chern character, we omitted the use of any formal
variables. The reason for this is that without formal variables, we can determine an inter-
esting relationship between the equivariantly closed classes Ch(E; ∇) :=∑k≥0 hol2k
and Ch(G, a, b) for a suitable setting, (see also Remark 4.19). In fact, in Sect. 4.4 we
recall a well-known construction starting from an abelian gerbe on M to induce a line
bundle E with connection Â on the free loop space L M . Using this construction, we
show that the equivariant forms can be identified.

Corollary 4.24. For a, b ∈ R with a + b = 1, let φa,b =
[

a b
−1 1

]

∈ SL(2,R). Then

there is an induced map �−1
a,b such that

(�−1
a,b)
∗Ch(G, a, b) = Ch(G, 1, 0).

Furthermore, the adjoint map � : L(L M) → MT , �(γ )(t, u) = γ (t)(u), induces a
map �∗ such that the equivariant Chern classes are identified with each other,

�∗ ◦ (�−1
a,b)
∗Ch(G, a, b) = Ch(E; Â).

In the last Sect. 5, we consider the case of a general surface�. We show how to pro-
duce the gerbe holonomy hol ∈ �0(M�) via local Hochschild methods, and calculate
its De Rham differential in Proposition 5.12 as dDR (hol) = i · I t (H) ∧ hol, where H
denotes the 3-curvature of the gerbe. However, unlike the case � = T, we do not have
any natural candidates to complete holonomy to an equivariantly closed form.

We hope that the viewpoint presented in this paper is also suitable for defining 2-hol-
onomy for non-abelian gerbes, with the principle being that, in the non-abelian case, one
must exponentiate in the local Hochschild complex before applying the iterated integral.
Furthermore, the local nature of our description also seems to be central in understanding
the holonomy of not only non-abelian gerbes, but also higher dimensional analogs of
gerbes. We hope to come back to this and discuss these issues in a future work.
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Convention 1.1. We now give some sign conventions that are used in this paper.

(1) We denote by 
k = {(t1, . . . , tk) ∈ R
k |0 ≤ t1 ≤ · · · ≤ tk ≤ 1} the standard

k-simplex, which we will also simply write as 
k = {0 ≤ t1 ≤ · · · ≤ tk ≤ 1}.
The k-simplex 
k ⊂ R

k obtains an orientation induced from R
k , i.e. we take the

volume form dt1 ∧ · · · ∧ dtk . For example, for a (k, �)-shuffle σ the induced map
βσ : 
k+� → 
k ×
�, (t1 ≤ · · · ≤ tk+�) �→ (tσ(1) ≤ · · · ≤ tσ(k), tσ(k+1) ≤ · · · ≤
tσ(k+�)) is orientation preserving iff sgn(σ ) = +1.

(2) If X is a manifold with boundary ∂X, we call the induced orientation on ∂X the one
for which Stokes’ theorem holds without signs in all dimensions. Namely, the orien-
tation of X is given by the outward pointing normal vector of ∂X, followed by the ori-
entation of ∂X. In particular, the i th boundary component ∂i


k = {0 ≤ t1 ≤ · · · ≤
ti = ti+1 ≤ · · · ≤ tk ≤ 1} of 
k has outward pointing unit vector 1√

2
( ∂
∂ti
− ∂

∂ti+1
),

so that the induced orientation on ∂i

k is given by (−1)i−1 · { ∂

∂t1
, . . . , ∂

∂ti−1
, ∂
∂ti

+
∂

∂ti+1
, ∂
∂ti+2

, . . . , ∂
∂tk
}. Thus, the canonical map 
k−1 → ∂i


k, (t1 ≤ · · · ≤ ti ≤
· · · ≤ tk−1) �→ (t1 ≤ · · · ≤ ti ≤ ti ≤ · · · ≤ tk−1) is orientation preserving iff i is
odd.

(3) If X is a compact manifold with boundary, and Y is another manifold, we denote by
the integration along the fiber of a formω = f (x, y) ·dxi1 . . . dxik ∧dy j1 . . . dy j� ∈
�(X × Y ) the form:

∫

X
ω :=

( ∫

X
f (x, y)dxi1 . . . dxik

)
· dy j1 . . . dy j� ∈ �(Y ).

We can calculate the De Rham differential dDR of an integral along the fiber as
follows:
∫

X
dDR(ω) =

∫

X
d X

DR(ω) +
∫

X
dY

DR(ω) =
∫

∂X
ω + (−1)dim(X)dDR

(∫

X
ω

)

.

2. Equivariant Chern Character for Vector Bundles

In [B] Bismut introduces the equivariant Chern character of a complex vector bundle
with connection over a manifold. This is done via differential-geometric means with the
result an equivariantly closed element on the free loop space of the base of the bundle.

In [GJP] the authors reinterpet Bismut’s construction by using Hochschild complex
of forms on the base, which under mild assumptions is an algebraic model for the free
loop space. This viewpoint is clarifying as a specific Hochschild cocycle is produced
using the connection and its curvature. To do this, Getzler, Jones, and Petrack imbed the
line bundle in a trivial bundle such that the connection on the subbundle is the restriction
of the derivative of a function on the total space of the trivial bundle. This class produced
was later shown in [Z] to be independent of the imbedding.

In this section we review and provide another interpretation of the equivariant Chern
character. The new viewpoint is that the class produced is a closed, equivariant exten-
sion of the classical holonomy function on L M , induced by the connection. Indeed, the
curvature allows us to construct a collection of even degree forms, which we call higher
holonomy functions, solving a certain set of linear equations related to exterior derivative
and contraction by the natural vector field on L M . These imply that the total sum of
these functions is an equivariantly-closed function on L M .
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Convention. Since this work is intimately related to the Chern character, we will choose
to work with complex vector bundles and complex valued differential forms. Neverthe-
less, many of the results below, in particular those expressing holonomy and its higher
extensions using local Hochschild methods, work equally well in the setting of real
valued vector bundles and forms.

2.1. Definition of holonomy. Let E → M be a sub vector bundle of M × C
n → M

and assume M × C
n → M has a connection given by a globally defined matrix valued

1-form A ∈ �1(M, End(Cn)), keeping E → M invariant. Note that every abstract
vector bundle and a connection, up to isomorphism, is realized in this way. For a path
γ : [0, 1] → M let P1

0 (γ ) be the path in E given by parallel translation. This function
is defined by solving the ordinary differential equation x ′(t) = x(t)A(t) in End(Cn)

with initial value x(0) = I d, where A(t) = A(γ ′(t)), whose unique solution given by
the matrix

P1
0 (γ ) =

∑

k≥0

∫


k
A(t1) · · · A(tk)dt1 · · · dtk, (2.1)

where 
k is the set of numbers 0 ≤ t1 ≤ · · · ≤ tk ≤ 1 and A(t) is, in the local
trivialization, the connection matrix of 1-forms evaluated at γ ′(t).

This matrix is to be interpreted as an endomorphism from Eγ (0) to Eγ (1), which
are identified in the local trivialization. Similarly we may define Pt

s (γ ). These functions

satisfy Pt
s =

(
Ps

t

)−1 and Pt
s ◦ Ps

r = Pt
r , which implies we can define parallel translation

along any path by covering the path with local trivializations.
For paths that are loops, this parallel transport P1

0 produces a section of a bundle of
the free loop space L M , which we now describe. Consider the pullback of the induced
bundle End(E)→ M with induced connection, via the map ev0 : L M → M given by
evaluation at time zero, i.e. E := (ev0)

∗(End(E)).

E ��

��

End(E)

��
L M

ev0 �� M

Now, P1
0 induces a section of E → L M , which we denote by hol : L M → E . General-

izations of these facts will all be proved in the next chapter.
Let us denote the pullback connection on E → L M by ∇∗.

Proposition 2.1. For any vector field x along γ we have

∇∗hol(γ, x) =
∫ 1

0
P1

t (γ ) ◦ R(γ ′(t), x(t)) ◦ Pt
0(γ )dt,

where R is the curvature of the connection on E → M.

For line bundles this formula reproduces the known formula for the exterior derivative
of the holonomy function on the free loop space, see [Br, p. 234, Prop. 6.1.1(2)].

One can give a direct calculus proof of this proposition, by considering a path of
loops, and calculating the total change in holonomy by computing along small squares
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that partition this homotopy. We will see instead this formula arising algebraically, after
giving an interpretation of holonomy using Hochschild complexes and iterated integrals
(see Proposition 2.10).

From this proposition we have the following well known corollaries.

Corollary 2.2. Denote by t the natural vector field on L M coming from the circle action.
Then, the function hol : L M → E has the following two properties.

(1) If A is a flat connection then hol is a flat section, i.e.∇∗(hol) = 0.
(2) ∇∗t hol = 0.

Proof. (1) Since A is flat, we have R = 0 in Proposition 2.1.
(2) ∇∗t hol(γ ) = ιt∇∗hol(γ ) = ∫ 1

0 P1
t (γ ) ◦ R(γ ′(t), γ ′(t)) ◦ Pt

0(γ )dt = 0. ��
We’ll see that more elaborate versions of these corollaries will also appear naturally

in our algebraic setup (see Corollary 2.11).
We continue with our assumption that our vector bundle and connection are imbed-

ded in a trivial bundle with fiber C
n and possibly non-trivial connection. (This includes

the case of a local trivialization of a bundle restricted to a contractible neighborhood.)
In this case, the connection of E can be written as a 1-form A on M with values in the
associative algebra gl = gl(Cn), and as we explain below, the holonomy function hol
above is realized as a Chen iterated integral.

2.2. The Chen iterated integral map and holonomy. In this subsection, we recall an
alternative description of the holonomy, using Chen’s iterated integral map, as it was
used by Getzler, Jones, Petrack in [GJP]. First, we recall the Hochschild chain complex
of an associative algebra (with values in itself), which is an associative algebra under
the shuffle product.

Definition 2.3. For a differential graded associative algebra A, the Hochschild chain
complex is given by C H•(A) = ⊕n≥0 A ⊗ (A[1])⊗n, where [1] denotes a shift down
by 1. Thus, the grading given by declaring a monomial a0 ⊗ · · · ⊗ an ∈ A ⊗ (A[1])⊗n

to be of total degree |a0| + · · · + |an| − n, where |ai | is the degree of ai . The differential
is given by

D(a0 ⊗ · · · ⊗ an) = −
n∑

i=0

(−1)|a0|+···+|ai−1|+i−1a0 ⊗ · · · ⊗ d(ai )⊗ · · · ⊗ an

−
n−1∑

i=0

(−1)|a0|+···+|ai |+i a0 ⊗ · · · ⊗ (ai · ai+1)⊗ · · · ⊗ an

+(−1)(|an |+1)(|a0|+···+|an−1|+n−1)(an · a0)⊗ a1 ⊗ · · · ⊗ an−1.

The shuffle product on C H•(A) is defined by

(a0 ⊗ a1 ⊗ . . .⊗ an) • (a′0 ⊗ an+1 ⊗ . . .⊗ an+m)

=
∑

σ∈S(n,m)

(−1)κ (a0 · a′0)⊗ aσ−1(1) ⊗ . . .⊗ aσ−1(n+m),

where S(n,m) is the set of all (n,m)-shuffles, S(n,m) = {σ ∈ Sn+m : σ(1) < · · · <
σ(n), and σ(n + 1) < · · · < σ(n + m)}. The sign (−1)κ is the Koszul sign, determined
according to the (potentially shifted) degrees.
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The shuffle product is associative and, if A is graded commutative, then D is a deriva-
tion of the shuffle product and the shuffle product is graded commutative.1 The example
of interest here is A = �(M; gl(Cn)) with the De Rham differential dDR .

The space L M = M S1
naturally inherits the structure of an infinite dimensional

Fréchet manifold [H]. In this context, vector fields, differential forms, contraction by
vectors, the exterior derivative, etc., are all defined (and enjoy similiar properties) as
in the finite dimensional case. We denote the differential forms on L M with values in
gl(Cn) by �(L M; gl).

Definition 2.4. The Chen iterated integral, I t : C H•(�(M; gl)) → �(L M; gl) is
defined as follows. For a monomial a0 ⊗ · · · ⊗ an with ai ∈ � ji (M; gl) we have I t
(a0 ⊗ · · · ⊗ an) ∈ �k(L M; gl), where k =∑n

i=0 ji − n. The value of this k-form at a
loop γ with vector fields x1, x2, . . . , xk along γ is defined to be

I t (a0 ⊗ · · · ⊗ an)γ (x1, x2, . . . , xk)

=
∫


n
[a0(0) ∧ ιta1(t1) ∧ · · · ∧ ιtan(tn)](x1, . . . , xk)dt1 · · · dtn,

where t is the canonical vector field on L M coming from the circle action, so that

ιta(t)(y1, . . . , ym) = aγ (t)
(
γ ′(t), y1(γ (t)), . . . , ym(γ (t))

)
.

In short, we have

I t (a0 ⊗ · · · ⊗ an) =
∫


n
a0(0)ιta1(t1) · · · ιtan(tn)dt1 . . . dtn . (2.2)

Conceptually, this integral is understood using the evaluation map and integration
along the fiber, as we will explain now. If we denote by ev : L M ×
n → M×(n+1) the
evaluation at the given times,

ev(γ, (0 ≤ t1 ≤ · · · ≤ tn ≤ 1)) = (γ (0), γ (t1), . . . , γ (tn))
and consider integration along the fiber 
n in the diagram

L M ×
n ev ��

∫

n

��

M×(n+1)

L M

then, up to a sign of (−1)(n−1)|a1|+(n−2)|a2|+···+|an−1|+n(n−1)/2, we can write the iterated
integral as the composition (see [GJP, Sect. 1])

I t |�(M)⊗n+1 : �(M, gl)⊗�(M, gl)[1]⊗n ev∗−→ �(L M ×
n, gl)

∫

n−→ �(L M, gl).

We have the following lemma concerning the relationship of holonomy and the alge-
braic structure of the Hochschild complex.

1 In the non-commutative case, the Hochschild differential need not be a derivation of the shuffle product,
see [TTW].
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Lemma 2.5. Given A ∈ �1(M; gl) we have

hol = I t (e1⊗A),

where e1⊗A ∈ C H•(�(M; gl(V ))) is given by

e1⊗A =
∑

k≥0

(1⊗ A)•k

k! = 1 + 1⊗ A + 1⊗ A ⊗ A + . . . .

Proof. The signs in the shuffle products and the iterated integral are all positive, so the
formula for I t (e1⊗A) agrees with the definition of holonomy in Eq. (2.1). ��

From the theory of ODE’s, it is well known that the holonomy function (or more
generally parallel transport) satisfies a gluing property along composable paths. We give
a purely iterated integral proof of this fact, which we will also use later.

Lemma 2.6. Let X be an odd form on M with values in gl. Let γ1 : [a, b] → M and
γ2 : [b, c] → M such that γ1(b) = γ2(b), and let γ = γ2 ◦ γ1 : [a, c] → M be the
composition of the paths. Then

I t (1, X, . . . , X︸ ︷︷ ︸
k

)(γ ) =
∑

k1,k2≥0
k1+k2=k

I t (1, X, . . . , X︸ ︷︷ ︸
k1

)(γ1) · I t (1, X, . . . , X︸ ︷︷ ︸
k2

)(γ2).

Moreover, if A ∈ �(M; gl), then we have

I t
(

e1⊗A
)
(γ ) = I t

(
e1⊗A

)
(γ1) · I t

(
e1⊗A

)
(γ2).

Proof. We denote by
 j
[r,s] = {r ≤ t1 ≤ · · · ≤ t j ≤ s}. For the first statement, we must

show

∫


k[a,c]
ιt X1(t1) . . . ιt X (tk)dt1 . . . dtk

=
∑

k1,k2≥0
k1+k2=k

(∫



k1[a,b]

ιt X1(t1) . . . ιt X (tk1)dt1 . . . dtk1

)

·
(∫



k2[b,c]

ιt X1(t1) . . . ιt X (tk2)dt1 . . . dtk2

)

.

We use the calculus notation for the integral over 
k
[a,b],

∫


k[a,b]
(. . . )dt1 . . . dtk =

∫ b

a

∫ tk

a
· · ·
∫ t3

a

∫ t2

a
(. . . )dt1 . . . dtk .
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With this notation, we can write

∑

k1,k2≥0
k1+k2=k

(∫ b

a
· · ·
∫ s2

a
ιt X (s1) . . . ιt X (sk1)ds1 . . . dsk1

)

·
(∫ c

b
· · ·
∫ t2

b
ιt X (t1) . . . ιt X (tk2)dt1 . . . dtk2

)

=
∑

k1,k2≥0
k1+k2=k

∫ c

b
· · ·
∫ t2

b

∫ b

a
· · ·
∫ s2

a
ιt X (s1) . . . ιt X (sk1)ιt X (t1) . . . ιt X (tk2)

×ds1 . . . dsk1 dt1 . . . dtk2 .

Since
k[a,c] �
⋃

k1+k2=k 

k1[a,b] ×
k2[b,c], we may repeatedly use the relation

∫ b
a +
∫ t j

b =∫ t j
a to obtain
∫ c

a
· · ·
∫ t2

a
ιt X (t1) . . . ιt X (tk)dt1 . . . dtk =

∫


k[a,c]
ιt X1(t1) . . . ιt X (tk)dt1 . . . dtk .

The second part follows from the first, since

I t
(

e1⊗A
)
(γ1) · I t

(
e1⊗A

)
(γ2)

=
⎛

⎝
∞∑

k1=0

∫ b

a
· · ·
∫ s2

a
ιt A(s1) . . . ιt A(sk1)ds1 . . . dsk1

⎞

⎠

·
⎛

⎝
∞∑

k2=0

∫ c

b
· · ·
∫ t2

b
ιt A(t1) . . . ιt A(tk2)dt1 . . . dtk2

⎞

⎠

=
∞∑

k=0

∑

k1,k2≥0
k1+k2=k

∫ b

a
· · ·
∫ s2

a
ιt A(s1) . . . ιt A(sk1)ds1 . . . dsk1

·
∫ c

b
· · ·
∫ t2

b
ιt A(t1) . . . ιt A(tk2)dt1 . . . dtk2

=
∞∑

k=0

∫ c

a
· · ·
∫ t2

a
ιt A(t1) · · · ιt A(tk)dt1 . . . dtk = I t

(
e1⊗A

)
(γ ).

��
Remark 2.7. Under the hypothesis of the previous lemma, a similar argument shows

I t
(
(1⊗ ω⊗k) • e1⊗A

)
(γ )

=
∑

k1,k2≥0
k1+k2=k

I t
(
(1⊗ ω⊗k1) • e1⊗A

)
(γ1) · I t

(
(1⊗ ω⊗k2) • e1⊗A

)
(γ2)

for any odd form ω.
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We are now interested in computing the exterior derivative of the holonomy function.
We note that in the case of gl-valued forms, the iterated integral map is not a chain map
with respect to D on C H•(�(M; gl)) and the exterior dDR on �(L M; gl). We do have
the following proposition, which is essentially proved in [C1,C2,GJP].

Proposition 2.8. We have:

dDR(I t (a0 ⊗ a1 ⊗ · · · ⊗ an))

= −
n∑

i=0

(−1)|a0|+···+|ai−1|+i−1 I t (a0 ⊗ a1 ⊗ · · · ⊗ d(ai )⊗ · · · ⊗ an)

−
n−1∑

i=0

(−1)|a0|+···+|ai |−i I t (a0 ⊗ a1 ⊗ · · · ⊗ (ai · ai+1)⊗ · · · ⊗ an)

+(−1)(|an |+1)(|a0|+···+|an−1|+n−1) I t ((an · a0)⊗ a1 ⊗ · · · ⊗ an−1)

−(−1)(|an |+1)(|a0|+···+|an−1|+n−1)an · I t (a0 ⊗ a1 ⊗ . . .⊗ an−1)

+(−1)|a0|+|a1|+···+|an−1|+n−1 I t (a0 ⊗ a1 ⊗ · · · ⊗ an−1) · an .

Proof. See, for example, [GJP, Prop. 1.6]. A more general version will be proved in
Proposition 3.6 below. ��

From this we can conclude

Proposition 2.9. Let A ∈ �1(M; gl). Then,

I t (De1⊗A) = ∇∗ I t (e1⊗A) = ∇∗hol ∈ �1(L M; gl(V )).

In particular, ∇∗hol is a Chen form.

Proof. Applying the previous proposition to

1⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸
k

and summing over all k ≥ 0 we get

dDR I t (e1⊗A) = I t (De1⊗A)− AI t (e1⊗A) + I t (e1⊗A)A.

Since ∇∗ is the pullback of the induced connection from End(E) → M , it is locally
given by ∇∗ = dDR + [A,−], so that the statement follows. ��
Proposition 2.10. We have the following explicit formula:

De1⊗A = (1⊗ (−R)) • e1⊗A

and the associated iterated integral formula

∇∗hol =
∑

k≥0

(
k∑

i=1

∫


k
−ιt A(t1) · · · ιt A(ti−1)ιt R(ti )ιt A(ti+1) · · · ιt A(tk)dt1 . . . dtk

)

.

For line bundles we have

∇∗hol = I t (1⊗ (−R)) ∧ hol =
(

−
∫

I
ιt R(t)dt

)

∧ hol.
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Fig. 1. The relation ∇∗(hol2k ) = −ιt(hol2k+2)

Proof. The formula De1⊗A = (1⊗ (−R))•e1⊗A follows immediately from the Hochs-
child differential since R = d A + A2.

The second equation is obtained by applying the Chen iterated integral to De1⊗A =
(1 ⊗ (−R)) • e1⊗A, and using Proposition 2.9 and the formula for the Chen iterated
integral, Eq. (2.2).

For line bundles we have C-valued forms, so that the third equation follows from
the well-known fact that the iterated integral takes the shuffle product in the Hochs-
child complex to the wedge product of forms, cf. [GJP, Prop. 4.1] or the more general
Proposition 5.6 below. ��
Corollary 2.11. (1) The connection A is flat if and only if De1⊗A = 0, and furthermore,

if A is flat then hol = I t (e1⊗A) is ∇∗-flat, i.e. ∇∗(hol) = 0.
(2) For the natural vector field t on L M given by the circle action, we have that

ιt∇∗hol = 0.

Proof. The two claims follow from the preceding proposition. For the second we use
the fact that for any γ , the 1-form ∇∗hol vanishes on t at γ since the factor R(γ ′(t), x)
in the integrand is zero when x = d/dt (γ ) = γ ′. ��

Our final lemma concerning the properties of hol is the following:

Lemma 2.12. Let tr : �(L M; gl)→ �(L M;C) be given by the trace. Then

dDR(tr(hol)) = tr(∇∗(hol)).

Proof. By the chain rule we have

dDR(tr(hol)) = tr(dDR(hol)) = tr (dDR(hol) + [A, hol]) = tr(∇∗(hol)).

��

2.3. The higher holonomies hol2k . Using the facts from the previous sections, we now
describe how the equivariant Chern character arises naturally by inductively solving a
sequence of linear equations involving �2k(L M; gl(C)). Starting from the holonomy
function hol, which we denote by

hol0 := hol ∈ �0(L M; gl(Cn)), (2.3)

we seek higher forms hol2k ∈ �2k(L M; gl(Cn)) such that for all k ≥ 0 we have

∇∗(hol2k) = −ιt(hol2k+2). (2.4)

The last Eq. (2.4) is depicted in Fig. 1. This is motivated in the first case, ∇∗hol0 =
−ιthol2, by the fact that the necessary condition ιt∇∗hol0 = −(ιt)2hol2 = 0 indeed
holds by Corollary 2.11(2). To define the higher holonomies, it is convenient to introduce
the following extended iterated integral map E .
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Definition 2.13. Denote by E : C H•(�(M×S1; gl))→ �(L M; gl) the composition of
the iterated integral map I t : C H•(�(X × S1; gl))→ �(L(X × S1); gl) for the carte-
sian product X× S1, with the pullback of the map ρ : �(L(M× S1); gl)→ �(L M; gl)
of the map ρ : L M → L(M × S1), where ρ(γ )(t) = (γ (t),−t). More explicitly, the
extended iterated integral map is given by E = ρ∗ ◦ I t ,

E : C H•(�(M × S1; gl))
I t−→ �(L(X × S1); gl)

ρ∗−→ �(L M; gl).

Remark 2.14. The above definition is motivated by a similar extended iterated integral
map used by Getzler, Jones, and Petrack in [GJP] to define the equivariant Chern char-
acter on the free loop space. More precisely, the extended iterated integral map in [GJP]
is defined as the composition,

C Hk[u2]
(
�(X × S1)S

1 [u2]
)
[u1]/((1, dt)− (1))⊗k[u1,u2] C[u, u−1]]

I t−→ �(L(X × S1))S
1 [u1, u2] ⊗k[u1,u2] C[u, u−1]]

ρ∗−→ �(L(X))[u] ⊗k[u] C[u, u−1]],
where I t and ρ∗ are extended linearly over k[u], and k[u] is thought of as a k[u1, u2]
module via u1 �→ u and u2 �→ u.

An explicit formula for the map E is given in [GJP, Sect. 5] Namely,

E((a0 + b0dt)⊗ . . .⊗ (an + bndt))

=
∫


n
a0(0)(ιta1(t1)− b1(t1)) . . . (ιtan(tn)− bn(tn))dt1 · · · dtn . (2.5)

It follows that we can rewrite the holonomy using the map E .

Lemma 2.15. We have hol0 = I t (e1⊗A) = E(e1⊗A), where, by abuse of notation, the
1-form A in the last expression is taken as the pullback of A ∈ �1(M, gl) along the
projection M × S1 → M.

We now define the higher holonomies hol2k ∈ �2k(L M; gl), which serve as correc-
tions for the failure of ∇∗hol = 0. Here, the term “higher” refers to the higher degree
of the forms.

Definition 2.16. Denote by A ∈ �1(M, gl) our connection 1-form, by R = d A + A2 ∈
�2(M, gl) the curvature, and denote by dt ∈ �1(S1) the canonical 1-form on the circle
S1. By abuse of notation we will use the same symbols for the forms on M × S1 given
by pullback under the projections M × S1 → M and M × S1 → S1, and we denote by
Rdt ∈ �3(M × S1, gl) the product of R and dt. We define hol2k ∈ �2k(L M; gl) by,

h2k :=
(

1⊗ (−Rdt)⊗ . . .⊗ (−Rdt)
︸ ︷︷ ︸

k tensor factors

)

• e1⊗A ∈ C H•(�(M × S1; gl)),

hol2k := E(h2k).

The following lemma expresses the higher holonomies as iterated integrals. Heuris-
tically, hol2k is given by an iterated integral similar to hol0, where we replace exactly k
copies of ιt A by the curvature R.
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Lemma 2.17. We have the identity

hol2k =
∑

m≥k

∑

1≤ j1<···< jk≤m

∫


m
X1(t1) · · · Xm(tm)dt1 · · · dtm,

where

X j (t j ) =
{

R(t j ) if j ∈ { j1, . . . , jk}
ιt A(t j ) otherwise .

Here R(t j ) is a 2-form taking in two vectors on a loop γ at γ (t j ).

Proof. If we apply the definition of shuffle product, all of the signs are positive, since
A and Rdt are odd, and we obtain

E(h2k) = E

⎛

⎝
∑

m≥k

∑

1≤ j1<···< jk≤m

1⊗ X1 ⊗ · · · ⊗ Xm

⎞

⎠ ,

where

X j =
{−Rdt if j ∈ { j1, . . . , jk}

A otherwise .

Now using the formula for E in (2.5), we obtain the claim. ��
Remark 2.18. It follows from the lemma that the restriction of hol2k to constant loops
M ⊂ L M equals Rk/k!, since ιt A(t j ) vanishes on constant loops, and the volume of
the k-simplex is 1/k!.

We now prove our main theorem of this section.

Theorem 2.19. For all k ≥ 0 we have that

∇∗hol2k = −ιthol2k+2.

These terms are given by the explicit formula

∑

m≥k+1

∑

1 ≤ j1 < · · · < jk ≤ m
1 ≤ s ≤ m, with s �= j1, . . . , jk

∫


m
X1(t1) · · · Xm(tm)dt1 · · · dtm,

where

X j (t j ) =
⎧
⎨

⎩

R(t j ) if j ∈ { j1, . . . , jk}
−ιt R(t j ) if j = s
ιt A(t j ) otherwise.
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Proof. We first show that ∇∗E(h2k) = E D(h2k), where ∇∗ = dDR + [A(0),−]. To do
this we calculate d E(h2k). Expanding E(h2k) as in the proof of 2.17, and using the fact
that E = ρ∗ ◦ I t and ρ∗ is a chain map, it follows from Proposition 2.8 that

d E(hol2k) = ρ∗
⎧
⎨

⎩

∑

m≥k

∑

1≤ j1<···< jk≤m

[

−
m∑

i=1

I t (1⊗ X1 ⊗ · · · ⊗ d Xi ⊗ · · · ⊗ Xm)

−
m−1∑

i=1

I t (1⊗ X1 ⊗ · · · ⊗ (Xi Xi+1)⊗ · · · ⊗ Xm)

−X1(0) · I t (1⊗X2⊗· · ·⊗Xm) + I t (1⊗X1⊗· · ·⊗Xm−1) · Xm(0)

]⎫⎬

⎭
,

where

X j =
{−Rdt if j ∈ { j1, . . . , jk}

A otherwise ,

and Xi (0) = ev∗0(Xi ) with ev0 : L(M × S1) → M × S1 being the evaluation at time
zero. Note that since the composition ev0 ◦ ρ : L M → L(M × S1)→ M × S1 sends γ
to (γ (0), 0), the pullback ρ∗(Rdt (0)) is zero. Therefore, the last two terms in the sum
are zero whenever X1 = −Rdt , or Xm = −Rdt , respectively. So we have

dDR ◦ ρ∗ ◦ I t (h2k) = ρ∗ ◦ dDR ◦ I t (h2k)

= ρ∗
⎧
⎨

⎩

∑

m≥k

∑

1≤ j1<···< jk≤m

[

−
m∑

i=1

I t (1⊗ X1 ⊗ · · · ⊗ d Xi ⊗ · · · ⊗ Xm)

−
m−1∑

i=1

I t (1⊗ X1 ⊗ · · · ⊗ (Xi Xi+1)⊗ · · · ⊗ Xm)

−A(0) · I t (1⊗ X1 ⊗ · · · ⊗ Xm) + I t (1⊗ X1 ⊗ · · · ⊗ Xm) · A(0)

]⎫⎬

⎭
(2.6)

with the same X j as before. On the other hand, by Definition 2.3,

Dh2k =
⎧
⎨

⎩

∑

m≥k

∑

1≤ j1<···< jk≤m

[

−
m∑

i=1

1⊗ X1 ⊗ · · · ⊗ d Xi ⊗ · · · ⊗ Xm

−
m−1∑

i=1

1⊗ X1 ⊗ · · · ⊗ (Xi Xi+1)⊗ · · · ⊗ Xm

]⎫⎬

⎭
, (2.7)

since for all X1, . . . , Xm , with X j ∈ {A,−Rdt}, the terms A ⊗ X1 ⊗ · · · ⊗ Xm and
Rdt ⊗ X1⊗ · · · ⊗ Xm all appear twice and cancel by sign due to A and Rdt being odd.
Therefore Eq. (2.6) shows that

∇∗E(h2k) = dDR E(h2k) + [A(0), E(h2k)] = ρ∗(I t (D(h2k))) = E D(h2k).
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Now we calculate ∇∗(hol2k) = E D(h2k) explicitly. Using the relations d A + A2 =
R, d R + [A, R] = 0, and (Rdt)2 = 0, we obtain from Eq. (2.7) that

D(h2k) =
∑

m≥k+1

m∑

s=1

∑

1≤ j1<···< jk≤m
j1,..., jk �=s

1⊗ X1 ⊗ · · · ⊗ Xm,

where

X j =
⎧
⎨

⎩

−R if j = s
−Rdt if j ∈ { j1, . . . , jk}
A otherwise

.

By the formula (2.5) for the extended iterated integral E , we have that

∇∗(hol2k) = E D(h2k) =
∑

m≥k+1

m∑

s=1

∑

1≤ j1<···< jk≤m
j1,..., jk �=s

∫


m
X1(t1) · · · Xm(tm)dt1 · · · dtm,

where

X j (t j ) =
⎧
⎨

⎩

−ιt R(t j ) if j = s
R(t j ) if j ∈ { j1, . . . , jk}
ιt A(t j ) otherwise

.

On the other hand, this equals

−ιt(hol2k+2) = −ιt
( ∑

m≥k+1

∑

1≤ j1<···< jk+1≤m

∫


m
X1(t1) · · · Xm(tm)dt1 · · · dtm

)

,

where

X j =
{

R(t j ) if j ∈ { j1, . . . , jk}
ιt A(t j ) otherwise ,

since contraction ιt is a linear graded derivation of square zero. ��
For our starting data of a vector bundle E → M with connection ∇, there is a nice

way to combine all of this information as a closed periodic form in the following way.
Consider

Ch(u)(E; ∇) :=
∑

k≥0

u−k · hol2k,

where u is a formal variable of degree 2. From the discussion above we have that

Corollary 2.20. (∇∗ + u · ιt)
(
Ch(u)(E; ∇)) = 0.



Equivariant Holonomy for Bundles and Abelian Gerbes

We note that the formula in Corollary 2.20 holds before taking the trace. Upon taking
trace, the element

tr(Ch(E; ∇)) =
∑

k≥0

u−k · tr(hol2k) ∈ �(L M)[u, u−1]]

satisfies by Lemma 2.12, that (d + u · ιt)tr(Ch(u)(E; ∇)) = 0, and by Theorem 2.19
that its Lie derivative Lt = dιt + ιtd along t vanishes. This element tr(Ch(u)(E; ∇))
is referred to in [GJP] as the equivariant Chern character. By Remark 2.18 the restric-
tion of tr(Ch(u)(E; ∇)) to constant loops equals the ordinary Chern character. We may
consider the complex of invariant forms

�(L M)[u, u−1]]inv(t) =
{∑

i≤r

ui · ωi

∣
∣
∣r ∈ Z, ωi ∈ �(L M) with Lt(ωi ) = 0

}

,

which has a differential d + u · ιt of square zero, since (d + u · ιt)2 = u · Lt = 0 on
�(L M)[u, u−1]]inv(t). Then, tr(Ch(E; ∇)) ∈ �(L M)[u, u−1]]inv(t) is a closed ele-
ment of total degree 0.

For later purposes, it will also be useful to define the equivariant Chern character
in a complex without formal variables, see [AB,B,W]. More precisely, we denote by
�(L M)inv(t) = {ω ∈ �(L M)|Lt(ω) = 0} the space of invariant forms on the free loop
space L M with the Witten differential d + ιt. Using the same reasoning as above, we set

Ch(E; ∇) :=
∑

k≥0

hol2k,

and, after taking the trace, we obtain an element that is concentrated in even
degrees, tr(Ch(E; ∇)) ∈ �even(L M)inv(t), and moreover closed in �(L M)inv(t),
i.e. (d + ιt)(tr(Ch(E; ∇))) = 0.

3. Equivariant Chern Character Locally Defined

In this section, we give a local approach to defining the equivariant Chern character
on general bundles, inspired by a local formula for holonomy. To this we introduce a
generalization of the Hochschild complex that allows as input differential forms on local
charts spread out over a manifold.

3.1. The local Hochschild complex and iterated integral. For any p ∈ N, and p open
sets Ui1 , . . . ,Ui p from the cover {Ui }i , which we abbreviate by U = (Ui1 , . . . ,Ui p ),
there is an induced open subset N (p,U) ⊂ L M given by

N (p,U) =
{

γ ∈ L M :
(

γ

∣
∣
∣[ j−1

p ,
j
p

]
)

⊂ Ui j ,∀ j = 1, . . . , p

}

.

Note that the collection {N (p,U)}p,i1,...,i p forms an open cover of L M .
We now introduce a version of the Hochschild complex that is appropriate for dealing

with forms defined on various open sets Ui j .
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Definition 3.1. Fix p ∈ N, and open sets Ui1 , . . . ,Ui p ⊂ M. We define the Hochschild
chain complex subject to the data U = (Ui1, . . . ,Ui p ), by

C H (p,U)• =
⊕

n1,...,n p≥0
�(Ui p ∩Ui1)⊗

(
�(Ui1)[1]

)⊗n1⊗�(Ui1 ∩Ui2)⊗
(
�(Ui2)[1]

)⊗n2

⊗�(Ui2 ∩Ui3)⊗
(
�(Ui3)[1]

)⊗n3 ⊗ · · · ⊗ (�(Ui p )[1]
)⊗n p .

Note that the total degree of a monomial in C H (p,U)• is then given by (the total degree of
all forms)−(n1 + · · · + n p). We denote by C H (p,U)

k the subspace of elements of degree

k. The differential in C H (p,U)• is similar to the one in C H•(A) from Definition 2.3. To
define it, we use the fact that�(Ui j ∩Ui j+1) is a left-�(Ui j ) and right-�(Ui j+1)module
via the inclusions Ui j ∩ Ui j+1 ↪→ Ui j and Ui j ∩ Ui j+1 ↪→ Ui j+1 . Then the differential

on C H (p,U)• is given by applying the DeRham differential to each term, as well as mul-
tiplying adjacent elements cyclically in all possible positions, without ever multiplying
two module elements. Explicitly,

D
(

a1
0⊗(a1

1⊗. . .⊗a1
n1
)⊗a2

0⊗. . .⊗a p
0 ⊗(a p

1 ⊗. . .⊗a p
n p )
)

= −
p∑

i=1

n j∑

j=0

(−1)ε
i
j−1 a1

0⊗(a1
1⊗. . .⊗a1

n1
)⊗a2

0⊗. . .⊗dDR(a
i
j )⊗. . .⊗a p

0 ⊗(a p
1 ⊗. . .⊗a p

n p )

−
p∑

i=1

ni−1∑

j=0

(−1)ε
i
j a1

0⊗. . .⊗(ai
j · ai

j+1)⊗. . .⊗a p
n p

−
p−1∑

i=1

(−1)ε
i
ni a1

0 ⊗ . . .⊗ (ai
ni
· ai+1

0 )⊗ . . .⊗ a p
n p + (−1)

(|a p
n p |+1)·ε p

n p−1

×(a p
n p · a1

0)⊗ a1
1 ⊗ . . .⊗ a p

n p−1,

where for 1 ≤ i ≤ p and 0 ≤ j ≤ ni we have

εi
j =

i−1∑

k=1

(

|ak
0 | +

nk∑

�=1

(|ak
� | + 1)

)

+ |ai
0| + |ai

1| + · · · + |ai
j | + j.

Note that the signs here can be interpreted via the Koszul rule where the elements ai
j for

j > 0 are shifted by one. For p = 1 this complex is precisely the Hochschild complex
C H•(�(U1)). It follows that D2 = 0.

We also have a shuffle product, which is given by individually shuffling each of the
p tensor factors,

⊗

1≤i≤p

(
ai

0 ⊗
(

ai
1 ⊗ . . .⊗ ai

ni

))
•
⊗

1≤i≤p

(
bi

0 ⊗
(

ai
ni +1 ⊗ . . .⊗ ai

ni +mi

))

=
∑

σ1 ∈ S(n1,m1)
. . .

σp ∈ S(n p ,m p)

(−1)κ
⊗

1≤i≤p

(

(ai
0 · bi

0)⊗
(

ai
σ−1

i (1)
⊗ . . .⊗ ai

σ−1
i (ni +mi )

))

.
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Again, the signs here are determined as with the shuffle product on C H•(A), via the
Koszul rule where, for j > 0, ai

j and bi
j are shifted by one.

We remark that, as with C H•(�(M; gl)), D on C H (p,U)• is not a derivation of the
shuffle product on C H (p,U)• (though it is in the case gl = C).

Definition 3.2. There is an iterated integral map

I t (p,U) : C H (p,U)• → �(N (p,U); E |N (p,U))

given by

I t (p,U)(a1
0 ⊗ a1

1 ⊗ . . .⊗ a p
n p )(γ )

=
p∧

j=1

(∫



n j

a j
0 (t0) ∧ ιta j

1 (t1) ∧ · · · ∧ ιta j
n j (tn j )dt1 . . . dtn j

)

,

where we have set for vector fields y1, . . . , ym along γ ,

a j
0 (t0)(y1, . . . , ym) = (a j

0 )γ (r)

(

y1

(

γ

(
j − 1

p

))

, . . . , ym

(

γ

(
j − 1

p

)))

,

ιta
j
k (t)(y1, . . . , ym)=(a j

k )γ (s)

(

γ ′(s), y1

(

γ

(
j − 1 + t

p

))

, . . . , ym

(

γ

(
j − 1 + t

p

)))

.

We note that, as before, this iterated integral map can be interpreted using integration
along the fiber in the diagram

N (p,U)× (
n1 × · · · ×
n p )
ev ��

∫

n1×···×
n p

��

(Ui1)
×(n1+1) × · · · × (Ui p )

×(n p+1)

N (p,U)

where the evaluation map ev = ev1 × · · · × ev p is given by

N (p,U)×
n j ev j−→ (Ui j )
×(n j +1)

(γ, (0≤ t1 ≤ · · · ≤ tn j ≤1)) �→
(

γ

(
j − 1

p

)

, γ

(
j − 1 + t1

p

)

, . . . , γ

(
j − 1 + tn j

p

))

.

Then, up to a sign, we can write the iterated integral I t (p,U) as the composition

I t (p,U) : C H (p,U)•
ev∗→ �

(N (p,U)× (
n1 × . . . 
n p ); E |N (p,U)
)

∫

→ �(N (p,U); E |N (p,U)).

In the case where all open sets Ui are chosen to be Ui = M , and M is simply con-
nected, then the iterated integral map is a quasi-isomorphism I t : C H• → �(L M), see
K.-T. Chen’s papers [C1,C2] or also [GTZ, Prop. 2.5.3].
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3.2. Holonomy expressed locally. We assume we have a bundle and connection given
by local data as follows. We are given an open cover {Ui }i of M , and the complex vector
bundle E → M is given by the local transition functions gi, j : Ui ∩ U j → Gl(Cn).
Furthermore, the connection 1-form is given locally by Ai ∈ �1(Ui , gl) such that
A j = g−1

i, j Ai gi, j + g−1
i, j dDR(gi, j ), or, in other words, dDR(gi, j ) = gi, j A j − Ai gi, j .

The curvature is given by dDR(Ai ) + Ai ∧ Ai = Ri ∈ �2(Ui ). With a choice of open
covering and trivializations, every abstract bundle with connection induces these data.
For the remainder of this section, all differential forms are gl(C)-valued, and we remark
gl = gl(C) ⊂ GL .

We will locally define sections hol(p,U)
0 of E → L M on open subsets N (p,U), and

then show that these glue together to a global section hol0 of E → L M where E is the
pullback in

E ��

��

End(E)

��
L M

ev0 �� M

Using the given local connection 1-forms Ai ∈ �1(Ui , gl) and transition functions
gi, j ∈ �0(Ui ∩ U j ,Gl), we can define an element h

(p,U)
0 ∈ C H (p,U)

0 as follows. The
iterated integral of this element is exactly holonomy. Recall from the previous subsec-
tion, that we have chosen local data U = (Ui1 , . . . ,Ui p ), which is used to determine the
open set N (p,U) ⊂ L M .

Definition 3.3. Let h
(p,U)
0 ∈ C H (p,U)

0 be given by

h
(p,U)
0 =

∑

n1,...,n p≥0

gi p,i1 ⊗ A⊗n1
i1
⊗ gi1,i2 ⊗ A⊗n2

i2
⊗ · · · ⊗ gi p−1,i p ⊗ A

⊗n p
i p

.

Alternatively, we may write h
(p,U)
0 as a shuffle product

h
(p,U)
0 = g̃i p,i1 • eÃi1 • g̃i1,i2 • eÃi2 • · · · • eÃi p ,

where

Ãi j = 1⊗ · · · ⊗ Ai j ⊗ · · · ⊗ 1 ∈ �(Ui p ∩Ui1)⊗�(Ui1)
⊗0 ⊗ . . .⊗�(Ui j )

⊗1

⊗ . . .⊗�(Ui p )
⊗0

has the 1-form Ai j ∈ �1(Ui j ) at the j th open set Ui j and 1s everywhere else, and

g̃i j ,i j+1 = 1⊗ · · · ⊗ gi j ,i j+1 ⊗ · · · ⊗ 1 ∈ �(Ui p ∩Ui1)⊗�(Ui1)
⊗0

⊗ . . .⊗�(Ui j ∩Ui j+1)⊗ . . .⊗�(Ui p )
⊗0

has the 0-form gi j ,i j+1 ∈ �0(Ui j ∩ Ui j+1) in the j th module �(Ui j ∩ Ui j+1) and 1s
everywhere else.
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We denote by hol(p,U)
0 = I t (p,U)(h(p,U)

0 ) ∈ �0(N (p,U); E |N (p,U)) the iterated

integral applied to h
(p,U)
0 .

The locally defined sections hol(p,U)
0 glue together to give a globally defined section

of E → L M .

Proposition 3.4. The local sections hol(p,U)
0 ∈ �0(N (p,U); E |N (p,U)) determine a

global section hol0 ∈ �0(L M; E) satisfying

hol0|N (p,U) = hol(p,U)
0 on N (p,U).

Proof. We use the following two properties:

(1) Subdivision: Fix p and U = {Ui1, . . . ,Ui p }. Subdivide each of the p intervals of
[0, 1] into r subintervals, and use the same open set Ui j for all of the r subintervals
of the j th interval, to give a new cover U ′ with

U ′im·r−r+1
= · · · = U ′im·r = Uim

for 1 ≤ m ≤ p. Then N (p,U) = N (r · p,U ′), and hol(p,U)
0 = hol(r ·p,U

′)
0 .

(2) Overlap: For any p and U = {Ui1 , . . . ,Ui p } and U ′ = {U j1, . . . ,U jp }, we have

hol(p,U ′)
0 (γ ) = g−1

i p, jp
(γ (0))hol(p,U)

0 (γ )gi p, jp (γ (1))

for γ ∈ N (p,U ∩ U ′), where

U ∩ U ′ = {(Ui1 ∩U j1), . . . , (Ui p ∩U jp )}.
The lemma follows from these two facts, since for γ ∈ N (p,Ui1 , . . . )∩N (p′,U j1 , . . . ),
we may assume by (1) that p = p′, and then by (2) the sections agree on the overlap, up
to conjugation by gi p, jp at γ (0) = γ (1). Since the fiber of E over γ is End(Eγ (0), Eγ (0))
and the transition functions gi j on E induce transition functions on End(E)→ M given
by conjugation by gi j , this implies we have a well defined section hol0 of E → L M .

To prove (1), for any 1 ≤ m ≤ p and 1 ≤ s ≤ r − 1, whenever Uim·r−s = Uim·r−s+1 ,
we have g = gim·r−s ,im·r−s+1 = id, so that

∑

k1,k2≥0

∫


k1×
k2
ιt A(t1) · · · ιt A(tk1)g(t)ιt A(s1) · · · ιt A(sk2)dt1 . . . dsk2

=
∑

k≥0

∫


k
ιt A(t1) · · · ιt A(tk)dt1 . . . dtk (3.1)

by the gluing Lemma 2.6. Applying this r − 1 times on each of the p subintervals, we

obtain hol(p,U)0 = hol(r ·p,U
′)

0 .
For the proof of (2), let U = {Ui1, . . . ,Ui p } and U ′ = {U j1, . . . ,U jp }. We will first

restrict our attention to the first subinterval, and show that

gim , jm

(
m − 1

p

)

I t (e1⊗A jm ) = I t (e1⊗Aim )gim , jm

(
m

p

)

, (3.2)
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where the iterated integral is computed over the interval
[

m−1
p , m

p

]
and Aim , A jm are

the local 1-forms on the sets Uim and U jm , respectively. Applying the identities (3.2) and
gim−1,im gim , jm = gim−1, jm = gim−1, jm−1 g jm−1, jm repeatedly to the expression

hol(p,U)0 gi p, jp (1)

= gi p,i1(0)I t (e1⊗Ai1 )gi1,i2

(
1

p

)

· · · gi p−1,i p

(
p − 1

p

)

I t (e1⊗Ai p )gi p, jp (1),

we obtain gi p, jp (0)hol(p,U ′)
0 , as desired in (2).

Note the formula in (3.2) says that the iterated integral (or parallel transport) is inde-
pendent of Ai up to conjugation by gi j , which is well known from bundle theory and the
existence and uniqueness of ODE’s. We will give an iterated integral proof here instead.

We will prove (3.2) for m = 1, noting that the other cases have a similar proof. Fur-
thermore, we abbreviate i = i1 and j = j1. Recall that A j = g−1 Ai g + g−1dg, where
g = gi, j : Ui ∩ U j → GL is the coordinate transition function. We use the following
multiplicative version of the fundamental theorem of calculus for the iterated integral.
For r < s,

g(r)I t (e1⊗g−1dg)

= g(r)
∑

k≥0

∫


k[r,s]
ιt(g
−1dg)(t1) . . . ιt(g

−1dg)(tk)dt1 . . . dtk = g(s). (3.3)

Here the k-simplex used in the integral is 
k[r,s] = {r ≤ t1 ≤ · · · ≤ tk ≤ s}. (One

proof of this is given observing the function f (s) = g(r)I t (e1⊗g−1dg)g(s)−1 satisfies
f (r) = I d and f ′(s) = 0.) We use this to calculate

g(0)I t
(

e1⊗A j
)
= g(0)I t

(
e1⊗(g−1 Ai g+g−1dg)

)
,

and show that it equals I t (e1⊗Ai )g
( 1

k

)
. From the definition of the shuffle product we

have

e1⊗(g−1 Ai g+g−1dg) =
∑

k1,...,kr≥0
r≥1

1⊗ (g−1dg)⊗k1 ⊗ g−1 Ai g ⊗ (g−1dg)⊗k2 ⊗ g−1 Ai g

⊗ · · · ⊗ g−1 Ai g ⊗ (g−1dg)⊗kr ,

and applying Definition 3.2 of I t we have

g(0)I t (e1⊗A j )

= g(0)
∑

k1,...,kr≥0
r≥0

∫



nr +r−1
[0,1/p]

ιt(g
−1dg)(t1) · · · ιt(g−1dg)(tk1) ∧ ιt(g−1 Ai g)(tk1+1)

∧ιt(g−1dg)(tk1+2) · · · ιt(g−1dg)(tnr−1+r−2) ∧ ιt(g−1 Ai g)(tnr−1+r−1)

∧ιt(g−1dg)(tnr−1+r ) · · · ιt(g−1dg)(tnr +r−1)dt1 . . . dtnr +r−1, (3.4)
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where ni = k1 + · · · + ki . For each r , we apply the identity in (3.3) r times, showing all
the iterated integrals of g−1dg that appear, collapse. In the first case we have

g(0)
∑

k1≥0

∫

{0≤t1≤···≤tk1≤tk1+1}
ιt(g
−1dg)(t1) . . . ιt(g

−1dg)(tk1)dt1 · · · dtk1 = g(tk1+1),

reducing g(0)I t (e1⊗A j ) to

g(0)I t (e1⊗A j ) =
∑

k2,...,kr≥0
r≥0

∫
ιt Ai (tk1+1)g(tk1+1)

∧ιt(g−1dg)(tk1+2) · · · ιt(g−1dg)(tnr−1+r−2) ∧ ιt(g−1 Ai g)(tnr−1+r−1)

∧ιt(g−1dg)(tnr−1+r ) · · · ιt(g−1dg)(tnr +r−1)dtk1+1 . . . dtnr +r−1,

since the terms g(tk1+1) and g−1(tk1+1) cancel. Similarly, for each � with 1 < � ≤ r ,
fixing tn�+�, we have

∫


(�)

ιt Ai (tn�+�)g(tn�+�)ιt(g
−1dg)(tn�+�+1)

. . . ιt(g
−1dg)(tn�+1+�)dtn�+�+1 · · · dtn�+1+� = ιt Ai (tn�+�)g(tn�+1+�+1),

where 
(�) = {tn�+� ≤ tn�+�+1 ≤ · · · ≤ tn�+1+� ≤ tn�+1+�+1}. Again, g(tn�+1+�+1) can-
cels with g−1(tn�+1+�+1) and, continuing in this way, we see that the entire sum in (3.4)
collapses to

∑

r≥1

∫


r−1
[0,1/p]

ιt Ai (t1) · · · ιt Ai (tr−1)g

(
1

p

)

dt1 · · · dtr−1 = I t (e1⊗Ai )g

(
1

p

)

.

This completes the proof of the proposition. ��
In the first two subsections, we constructed a holonomy function under the assump-

tion that the bundle is trivial. If we can choose our cover for M to be {M} itself, we
obtain the following corollary.

Corollary 3.5. The restriction of the section hol0 from Lemma 3.4 to any N (1,U)where
U = {U1} equals the function hol0 defined on LU1 in Eq. (2.3).

Proof. In this case the bundle is trivial and we have that the iterated integral formulas
are the same since g11 = id on U1. ��

Again, as before, I t (p,U) is not a chain map for gl-valued forms, but we do have the
following.

Proposition 3.6. Ifa = a1
0⊗(a1

1⊗. . .⊗a1
n1
)⊗a2

0⊗. . .⊗a p
0⊗(a p

1⊗. . .⊗a p
n p ) ∈ C H (p,U)• ,

then

dDR

(
I t (p,U)(a)

)

= I t (p,U)(Da)− (−1)(|a
p
n p |+1)εa p

n p (0) · I t (p,U)(b) + (−1)ε I t (p,U)(b) · a p
n p (1),
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where b = a1
0 ⊗ (a1

1 ⊗ . . .⊗ a1
n1
)⊗ a2

0 ⊗ . . .⊗ a p
0 ⊗ (a p

1 ⊗ . . .⊗ a p
n p−1), and

ε =
p∑

i=1

⎛

⎝|ai
0| +

ni∑

j=1

(|ai
j | + 1)

⎞

⎠− (|a p
n p | + 1).

Proof. The proof uses the same techniques that were used in [GJP] to prove Propo-
sition 2.8 stated above. Let εi

j be as in Definition 3.1, and note that ε = ε
p
n p−1. We

have

dDR(I t (p,U)(a)) =
p∧

i=1

∫


ni
(−1)ε

i−1
ni−1 (dai

0)

(
i − 1

p

)

ιta
i
1(t1) · · · ιtai

ni
(tni )dt1 . . . dtnk

+
p∑

i=1

ni∑

j=1

(−1)ε
i
j−1

[(∫


n1
(a1

0)

(
0

p

)

ιta
1
1(t1) · · · ιta1

n1
(tn1)dt1 . . . dtn1

)

∧ · · · ∧
(∫


ni
(ai

0)

(
j − 1

p

)

ιta
i
1(t1) · · · ([d, ιt] − ιtd)ai

j (t j ) · · · ιtai
ni
(tni )dt1 . . . dtni

)

∧ · · · ∧
(∫


n p
(a p

0 )

(
p − 1

p

)

ιta
p
1 (t1) · · · ιta p

n p (tn p )dt1 . . . dtn p

)]

,

where we have use identity dιt = [d, ιt]−ιtd. Now we use the fact that [d, ιt]a = da/dt ,
the fundamental theorem of calculus

∫ t j+1

t j

[d, ιt]a(t)dt =
∫ t j+1

t j

d

dt
a(t)dt = a(t j+1)− a(t j ),

and the relation

((ιta j )a j+1)(t j ) + (−1)|a j |(a j (ιta j+1))(t j ) = (ιt(a j a j+1))(t j ).

Then we see this sum contains all of the terms in I t (p,U)(Da), except for the term

(−1)(|a
p
n p |+1)εa p

n p (0) · I t (b), and it additionally includes the term (−1)ε I t (b) · a p
n p (1).��

Proposition 3.7. We have I t (p,U)(D(h(p,U)
0 )) = ∇∗(I t (p,U)(h(p,U)

0 )) = ∇∗(hol(p,U)
0 ),

where ∇∗ = dDR + [Ai p ,−].

Proof. This follows from the previous Proposition 3.6 by letting a = h
(p,U)
0 , (cf. also

Propositions 2.8 and 2.9). Note that the signs work out since Ai p is of degree +1. ��

Remark 3.8. In the complex C H (p,U)• we chose for simplicity the modules on the j th

vertex to be given by �(Ui j ∩ Ui j+1), cf. Definition 3.1. For a conceptual link of this
choice with the local approach for gerbes in Subsect. 5.1 below, we also mention how we
could choose alternate modules as follows. Beside the open sets Ui1 , . . . ,Ui p , choose
additional open sets U�1, . . . ,U�p , which are open sets chosen for the vertices of the
subdivided circle. More precisely, we are considering the open subset of L M given by,

{

γ ∈ L M :
(

γ

∣
∣
∣[ j−1

p ,
j
p

]
)

⊂ Ui j , and γ

(
j

p

)

∈ U� j ,∀ j = 1, . . . , p

}

.
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With this in mind, we consider the left-�(Ui j ) and right-�(Ui j+1) module �(Ui j ∩
U� j )⊗�(U� j )

�(U� j ∩Ui j+1). Note that there is a map

�(Ui j ∩U� j )⊗�(U� j )
�(U� j ∩Ui j+1)→ �(Ui j ∩U� j ∩Ui j+1),

coming from the inclusions of open sets. We have the right module map ρ : �(Ui j ∩
U� j )⊗�(U� j )

�(U� j ∩Ui j+1)→ �(Ui j ∩Ui j+1), which maps the element gi j ,� j⊗g� j ,i j+1

to gi j ,� j · g� j ,i j+1 = gi j ,i j+1 . There are appropriate Hochschild and iterated integral con-
structions, and the above considerations show that this approach is indeed equivalent to
the previous setup.

3.3. The higher holonomies hol2k . Let �(L M, E) denote differential forms on L M
with values in the pullback bundle E . We now define the higher holonomies hol2k ∈
�2k(L M, E) in a local way on charts N (p,U) and then show that they glue together
properly to give a well defined element of �2k(L M, E). Finally, these will satisfy the
relation from equation (2.4), namely ∇∗(hol2k) = −ιt(hol2k+2),

hol0
∇∗

����
��

��
��

hol2
−ιt
����

��
��

�� ∇∗

����
��

��
��

hol4
−ιt
����

��
��

�� ∇∗

����
��

��
��

• • · · ·
Definition 3.9. For a choice of p ∈ N and a tuple of open sets U = (Ui1 , . . . ,Ui p ) of
M, we have induced open sets U × S1 = (Ui1 × S1, . . . ,Ui p × S1) of M × S1. Denote

by E (p,U) : C H (p,U×S1)• → �(N (p,U)) the composition of maps

E (p,U) : C H (p,U×S1)•
I t (p,U×S1)−→ �(N (p,U × S1))

(ρ|N )∗−→ �(N (p,U)),
where ρ|N : N (p,U) → N (p,U × S1), γ �→ (γ,−id), is the restriction of ρ from
Definition 2.13. We call the E (p,U) the extended iterated integral subject to the local
data U .

With this, we define h
(p,U)
2k ∈ C H (p,U×S1)

2k to be given by the formula

h
(p,U)
2k =

∑

k1, . . . , k p ≥ 0
k1 + · · · + k p = k

g̃i p,i1 •
⎛

⎜
⎝
(

1⊗ (−Ri1 dt)⊗ · · · ⊗ (−Ri1 dt)
︸ ︷︷ ︸

k1 times

)
• eÃi1

⎞

⎟
⎠ • g̃i1,i2

• · · · • g̃i p−1,i p •

⎛

⎜
⎜
⎝

(
1⊗ (−Ri p dt)⊗ · · · ⊗ (−Ri p dt)

︸ ︷︷ ︸
kp times

)
• eÃi p

⎞

⎟
⎟
⎠

where g̃i j ,i j+1 , Ãi j are as before (see Definition 3.3). We define

hol(p,U)
2k = E (p,U)(h(p,U)

2k ) ∈ �2k(N (p,U), gl).

Similarly to Lemma 2.17, applying the definition of E we can rewrite hol(p,U)
2k in

terms of iterated integrals.
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Lemma 3.10. For k ∈ N, hol(p,U)
2k ∈ �2k(L M, gl) can be written as

∑

n1,...,n p≥0

∑

J ⊂ S
|J | = k

gi p,i1 (γ (0)) ∧
(∫


n1
X1

i1

(
t1
p

)

· · · Xn1
i1

(
tn1

p

)

dt1 · · · dtn1

)

∧gi1,i2

(

γ

(
1

p

))

· · · gi p−1,i p

(

γ

(
p − 1

p

))

∧
(∫


n p
X1

i p

(
p − 1 + t1

p

)

· · · Xn p
i p

(
p − 1 + tn p

p

)

dt1 · · · dtn p

)

, (3.5)

where the second sum is a sum over all k-element index sets J ⊂ S of the sets S =
{(ir , j) : r = 1, . . . , p, and 1 ≤ j ≤ nr }, and

X j
i =

{
Ri i f (i, j) ∈ J
ιt Ai otherwise .

Proof. This follows from the definition of E , as in the proof of Lemma 2.17. ��

Remark 3.11. The expression for hol(p,U)
2k simplifies greatly for line bundles. In this

case, the forms are all complex valued, so the iterated integral takes shuffle to wedge.
Therefore we can unshuffle the terms Rdt in h

(p,U)
2k , then apply the iterated integral, and

write

hol(p,U)2k (γ ) =
(∫


k
R(t1) · · · R(tk)dt1 . . . dtk

)

·
p∧

m=1

gim−1,im

(

γ

(
m − 1

p

))

e
∫

I m
p
ιt Aim dt

=
(∫


k
R(t1) · · · R(tk)dt1 . . . dtk

)

∧ hol(p,U)
0 (γ ),

where we have set I m
p = [m−1

p , m
p ] and i0 = i p. Here we have used that R is a global

form, and the iterated additivity in Lemma 2.6, namely

∑

k1, . . . , k p ≥ 0
k1 + · · · + k p = k

p∧

i=1

∫



ki[

i−1
p , i

p

]
R(t1) . . . R(tki )dt1 . . . dtki =

∫


k
R(t1) . . . R(tk)dt1 . . . dtk,

where k = k1 + · · · + kp and 
ki[
i−1

p , i
p

] = { i−1
p ≤ t1 ≤ · · · ≤ tki ≤ i

p }, and 
k = {0 ≤
t1 ≤ · · · ≤ tk ≤ 1}. Alternatively, the first factor can also be written as
∫


k
R(t1) . . . R(tk)dt1 . . . dtk = E

(
1⊗ (−Rdt)⊗ · · · ⊗ (−Rdt)

)

= E

(
1

k! (1⊗ (−Rdt))•k
)

= 1

k!
(∫

I
R(t)dt

)∧k

.

Proposition 3.12. The locally defined forms hol(p,U)
2k define a globally defined 2k-form

hol2k ∈ �2k(L M, E) with values in E .
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Proof. We can repeat the proof as in Proposition 3.4, showing the subdivision and over-
lap properties. The subdivision property follows as in Proposition 3.4, using the gluing
property of the iterated integral, see Remark 2.7. The overlap property follows as in
Proposition 3.4 almost verbatim for hol2k , where we replace k of the ιt A’s by R, and
using the fact that gi j Ri = R j gi j (since R is a global 2-form, so that Ri = R j on
Ui ∩U j ). ��
Remark 3.13. As in Remark 2.18, the restriction of hol2k to constant loops M ⊂ L M
equals Rk/k!.

Finally, we state our main result of this section.

Theorem 3.14. For all k ≥ 0 we have that

∇∗hol2k = −ιthol2k+2 ∈ �2k+1(L M; E)
and this is given by the explicit formula

∑

n1,...,n p≥0

∑

(ir , s) ∈ S
J ⊂ S

|J | = k, (ir , s) /∈ J

gi p,i1 (γ (0))

∧
(∫


n1
X1

i1

(
t1
p

)

· · · Xn1
i1

(
tn1

p

)

dt1 · · · dtn1

)

∧ · · · ∧ gi p−1,i p

(

γ

(
p − 1

p

))

∧
(∫


n p
X1

i p

(
p − 1 + t1

p

)

· · · Xn p
i p

(
p − 1 + tn p

p

)

dt1 · · · dtn p

)

, (3.6)

where S = {(ir , j) : r = 1, . . . , p, and 1 ≤ j ≤ nr } and

X j
i =

⎧
⎨

⎩

Ri i f (i, j) ∈ J
−ιt Ri i f (i, j) = (ir , s)
ιt Ai otherwise

.

Proof. The proof is the same as in Theorem 2.19, where the idea is, as before, that

−ιt(hol2k) and ∇∗E
(
h
(p,U)
2k

)
are both given by formula (3.6), i.e. a sum over all

n1, . . . , n p ≥ 0 of products of iterated integrals where exactly k of the Xi ’s are equal to
R and exactly one is equal to (−ιt R).

By Lemma 3.10 we see that −ιt(hol2k+2) is equal to (3.6). For ∇∗E(h(p,U)
2k

) =
E
(
Dh

(p,U)
2k

)
, the calculation is the same as in Theorem 2.19, where the only new feature

is the apparent terms gi, j in h
(p,U)
2k . But, all of these terms in E

(
Dh

(p,U)
2k

)
cancel with

correct sign since dgi, j − gi, j A j + Ai gi, j = 0. ��
From the previous theorem, it follows that

Ch(E; ∇) =
∑

k≥0

tr(hol2k)

is in the kernel of the Lie derivative Lt = [dDR, ιt] (since (dDR)
2 = (ιt)2 = 0), and is

therefore an element of �(L M)inv(t), just as in Sect. 2.3. Moreover,
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Corollary 3.15 ([B,GJP]). For any vector bundle E with connection ∇,

(d + ιt) (Ch(E; ∇)) = 0,

i.e. Ch(E; ∇) is a closed element of the space �(L M)inv(t) with differential d + ιt.
Finally, Ch(E; ∇) restricted to constant loops M ⊂ L M, equals the ordinary Chern
character on M.

The last statement follows from Remark 3.13. Just as in Sect. 2.3, we can also define
Ch(u)(E; ∇) = ∑k≥0 u−k · tr(hol2k) ∈ �(L M)[u, u−1]]inv(t), which is closed under
the differential d + u · ιt. However, with foresight of the Chern character that will be
appearing in the gerbe case in the next section, it will be more useful to focus on
Ch(E; ∇), see also Remarks 4.19 and 4.25 below.

4. Equivariant 2-Holonomy for Abelian Gerbes

In this section, we work with abelian gerbes with connnection, developing and applying
the local approach from the previous section to the torus mapping space. Starting with
2-holonomy of an abelian gerbe with connection, we define a sequence of higher holo-
nomies hol2k,2� ∈ �2k+2�(MT) that are related via the diagram in Fig. 5, with hol0,0
being the usual 2-holonomy. Together these will give a equivariantly closed form on the
torus mapping space, see Corollary 4.18.

4.1. Iterated integral for the torus in the (p, q)-simplicial model. Let T denote the torus
T = S1 × S1, which we will frequently view as a quotient of [0, 1] × [0, 1], and let
MT = Map(T,M) be the space of smooth maps from the torus to a fixed manifold
M . Recall that MT is a smooth Fréchet manifold [H] on which we can perform the
usual constructions of differential topology (vector fields, differential forms, exterior
derivative, etc.). We will construct forms on MT by first defining them locally on open
sets N (p, q,U) ⊂ MT.

Fix numbers p, q ∈ N, and open sets Ui(k,�) of M for k = 1, . . . , p and � = 1, . . . , q,
which we abbreviate by U = {Ui(k,�)}1≤k≤p,1≤�≤q . Define the open subset N (p, q,U) ⊂
MT by

N (p, q,U) =
{

γ ∈ MT :
(

γ

∣
∣
∣[

k−1
p , k

p

]
×
[
�−1

q , �q

]
)

⊂ Ui(k,�) , for 1≤k≤ p, 1≤�≤q

}

.

Intuitively, we divide the torus into a p × q grid, and consider those maps for which
the rectangular component labelled by (k, �) has image in the open subset Ui(k,�) . We
denote the vertices, horizontal and vertical edges of this subdivision as in Fig. 2. Here,
the (k, q)th face is glued to the (k, 1)st vertical edge, and similarly the (1, �)th face is
glued to the (p, �)th horizontal edge to obtain a suitable cubical subdivision of the torus.

For given p, q ∈ N, and a choice of open setsU as above, we now introduce some nota-
tion for the various open sets used in the torus subdivision. First, denote by U f

k, � := Ui(k,�)

the open set to which the (k, �)th face f
k, � will be mapped to for a γ ∈ N (p, q,U).
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Fig. 2. Vertices, edges, and faces of the torus. (The orientation of the edges is as indicated, and faces are
oriented by their inclusion in the plane.)

We denote the intersections of the open sets along a horizontal edge by U
←→e
k,� , respec-

tively along a vertical edge by U�e
k,�, i.e.

U
←→e
1,� = Ui(1,�) ∩Ui(p,�) , and for k > 1 : U

←→e
k,� = Ui(k−1,�) ∩Ui(k,�) ,

U�e
k,1 = Ui(k,q) ∩Ui(k,1) , and for � > 1 : U�e

k,� = Ui(k,�−1) ∩Ui(k,�) ,

and the intersection of open sets at a vertex by U v
k,�, i.e.

U v
1,1 = Ui(1,1) ∩Ui(p,1) ∩Ui(1,q) ∩Ui(p,q) ,

for k > 1 : U v
k,1 = Ui(k,1) ∩Ui(k,q) ∩Ui(k−1,1) ∩Ui(k−1,q) ,

for � > 1 : U v
1,� = Ui(1,�) ∩Ui(1,�−1) ∩Ui(p,�) ∩Ui(q,�−1) ,

for k, � > 1 : U v
k,� = Ui(k,�) ∩Ui(k,�−1) ∩Ui(k−1,�) ∩Ui(k−1,�−1) .

Differential forms on these open sets are denoted by

A
f
k,� = �(U f

k, �), A
←→e
k,� = �(U

←→e
k,� ), A

�e
k,� = �(U�e

k,�), Avk,� = �(U v
k,�).

We refer to these as forms on the faces, edges, and vertices. We now define the torus-
Hochschild chain complex and the iterated integral subject to the data U .



T. Tradler, S. O. Wilson, M. Zeinalian

Definition 4.1. Fix p, q ∈ N, and open sets U = {Ui(k,�)}1≤k≤p,1≤�≤q as above. For

integers n1, . . . , nq ,m1, . . . ,m p ≥ 0, we first define A
n1,...,nq
m1,...,m p to be given by the tensor

product of differential forms defined in the following matrix of tensor products,

Av1,1 ⊗(A←→e1,1 )
⊗n1 ⊗Av1,2 ⊗(A←→e1,2 )

⊗n2 . . . ⊗(A←→e1,q )
⊗nq

⊗(A�e
1,1)
⊗m1 ⊗(A f

1,1)
⊗m1n1 ⊗(A�e

1,2)
⊗m1 ⊗(A f

1,2)
⊗m1n2 . . . ⊗(A f

1,q )
⊗m1nq

⊗Av2,1 ⊗(A←→e2,1 )
⊗n1 ⊗Av2,2 ⊗(A←→e2,2 )

⊗n2 . . . ⊗(A←→e2,q )
⊗nq

⊗(A�e
2,1)
⊗m2 ⊗(A f

2,1)
⊗m2n1 ⊗(A�e

2,2)
⊗m2 ⊗(A f

2,2)
⊗m2n2 . . . ⊗(A f

2,q )
⊗m2nq

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

⊗(A�e
p,1)
⊗m p ⊗(A f

p,1)
⊗m pn1 ⊗(A�e

p,2)
⊗m p ⊗(A f

p,2)
⊗m pn2 . . . ⊗(A f

p,q )
⊗m pnq

If we write m = m1 + · · ·+m p and n = n1 + · · ·+nq for short, then this matrix has m + p

rows and n + q columns. Note that the algebras of forms on the edges, A
←→e
k,� and A

�e
k,�,

are modules over the algebras of forms on the adjacent faces A
f
k′,�′ via the inclusion

of open sets. Similarly the algebras of forms on the vertices Avk,� are modules over the
algebras of forms on the adjacent edges and faces.

We would like to remark that in the above tensor product for A
n1,...,nq
m1,...,m p no particular

linear order was chosen to write this tensor product, but it is rather a coequalizer over all
possible linear orderings. For example, a monomial a ∈ A

n1,...,nq
m1,...,m p may given explicitly

by a choice of linear ordering as follows,

a =
⊗

1≤k≤p

⊗

1≤�≤q

⎛

⎝avk,� ⊗
⊗

1≤i≤mk

(a�e
k,�)i ⊗

⊗

1≤i≤n�

(a
←→e
k,� )i ⊗

⊗

1≤i≤mk

⊗

1≤ j≤n�

(a f
k,�)i, j

⎞

⎠ .

(4.1)

To identify a for another choice of linear ordering, a sign factor coming from the Koszul
sign rule has to be applied.

With this notation, the Hochschild complex subject to U is defined as

C H (p,q,U)• :=
⊕

n1, . . . , nq ≥ 0
m1, . . . ,m p ≥ 0

A
n1,...,nq
m1,...,m p [m + n],

where the square bracket “[m + n]” denotes the operation of a shift of total degree
down by n + m. For an element a ∈ A

n1,...,nq
m1,...,m p [m + n] ⊂ C H (p,q,U)• as in Eq. (4.1)

we will call m + n the simplicial degree of an element in C H (p,q,U)• , and denote by

|a| = ∑k
∑
�

(
|avk,�| +

∑
i |(a�e

k,�)i | +
∑

i |(a
←→e
k,� )i | +

∑
i
∑

j |(a f
k,�)i, j |

)
− (m + n) the

total degree of a.
To obtain a differential, we first define the face maps d↔r,i : A

n1,...,nr ,...,nq
m1,...,m p →

A
n1,...,nr−1,...,nq
m1,...,m p (for r = 1, . . . , q and i = 0, . . . , nr ), and d�r,i : A

n1,...,nq
m1,...,mr ,...,m p →

A
n1,...,nq
m1,...,mr−1,...,m p

(for r = 1, . . . , p and i = 0, . . . ,mr ). The map d↔r,i is defined by



Equivariant Holonomy for Bundles and Abelian Gerbes

multiplying the (r + n1 + · · · + nr−1 + i)th and the (r + n1 + · · · + nr−1 + i + 1)th column,

⎡

⎢
⎢
⎣

(a
←→e
1,r )i
...

(a f
p,r )m p,i

⎤

⎥
⎥
⎦⊗

⎡

⎢
⎢
⎣

(a
←→e
1,r )i+1
...

(a f
p,r )m p,i+1

⎤

⎥
⎥
⎦ �→

⎡

⎢
⎢
⎣

(a
←→e
1,r )i · (a

←→e
1,r )i+1

...

(a f
p,r )m p,i · (a f

p,r )m p,i+1

⎤

⎥
⎥
⎦

and leaving the other tensor factors unchanged. Note that taking products respects
the coequalizer over linear orderings, and thus defines a map d↔r,i : A

n1,...,nr ,...,nq
m1,...,m p →

A
n1,...,nr−1,...,nq
m1,...,m p . These maps are defined in a cyclic way, meaning that in the case r = q

and i = nq the operation d↔q,nq
: An1,...,nq

m1,...,m p → A
n1,...,nq−1
m1,...,m p multiplies the last column to

the first column from the left.
Similarly, d�r,i multiplies the (r+m1+· · ·+mr−1+i)th and the (r+m1+· · ·+mr−1+i+1)th

row,

[(a�e
r,1)i . . . (a

f
r,q)i,nq ]

⊗ �→ [((a�e
r,1)i · (a�e

r,1)i+1) . . . ((a
f

r,q)i,nq · (a f
r,q)i+1,nq )]

[(a�e
r,1)i+1 . . . (a

f
r,q)i+1,nq ]

,

leaving the other tensor factors unchanged. Again, this is done in a cyclic way so that
the last operator multiplies the last row and the first row. We note that the indices for
d↔r,i (and d�r,i ) are chosen in such a way, that two edge columns (respectively two edge
rows) are never being multiplied.

With this, we can finally define the differential D on C H (p,q,U)• to be given on
A

n1,...,nq
m1,...,m p by

D := (−1)m+n · dDR

+(−1)m+n+1 ·
∑

j = 1, . . .m + p, where
j = (1 + m1) + · · · + (1 + mr−1) + i + 1

(−1) j+1 · d�r,i

+(−1)m+n+1 ·
∑

j = 1, . . . n + q, where
j = (1 + n1) + · · · + (1 + nr−1) + i + 1

(−1)m+p+ j+1 · d↔r,i . (4.2)

If we rewrite the matrix in a linear order of tensor factors and using signs by the usual
Koszul rule, a lengthy but straightforward calculation, using that (dDR)

2 = (d ′)2 = 0
and d ′ ◦ dDR = dDR ◦ d ′ for d ′ =∑(−1) j+1d�r,i +

∑
(−1)m+p+ j+1d↔r,i , shows D2 = 0.

We denote the homology of this complex by H H (p,q,U)• := H•(C H (p,q,U)• , D).

Definition 4.2. We also have a shuffle product, which is defined using the degeneracy

maps s↔r,i : A
n1,...,nr ,...,nq
m1,...,m p → A

n1,...,nr +1,...,nq
m1,...,m p (for r = 1, . . . , p and i = 0, . . . , nr ), and

s�r,i : A
n1,...,nq
m1,...,mr ,...,m p → A

n1,...,nq
m1,...,mr +1,...,m p

(for r = 1, . . . , q and i = 0, . . . ,mr ). The
map s↔r,i is defined by adding a column of units 1 ∈ �(U ) (for the respective open sets

U) between the (r + n1 + · · · + nr−1 + i)th and the (r + n1 + · · · + nr−1 + i + 1)th column.
Similarly, s�r,i adds a row of units “1” between the (r + m1 + · · · + mr−1 + i)th and the
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(r + m1 + · · · + mr−1 + i + 1)th row. The operations are well-defined on the coequalizer
due the units 1 being of degree 0. With this, we set,

•↔r (a⊗b) =
∑

σ∈S(nr ,n′r )
sgn(σ ) ·

(
s↔r,σ (nr +n′r ) . . . s

↔
r,σ (nr +1)(a)

)
⊗
(

s↔r,σ (n1)
. . . s↔r,σ (1)(b)

)

∈ A
n1,...,nr +n′r ,...,nq
m1,...,m p ⊗ A

n′1,...,nr +n′r ,...,n′q
m′1,...,m′p

,

•�r (a⊗b) =
∑

σ∈S(mr ,m′r )
sgn(σ )·

(
s�r,σ (mr +m′r )

. . . s�r,σ (mr +1)(a)
)
⊗
(

s�r,σ (m1)
. . . s�r,σ (1)(b)

)

∈ A
n1,...,nq

m1,...,mr +m′r ,...,m p
⊗ A

n′1,...,n′q
m′1,...,mr +m′r ,...,m′p

.

Note that the two operators •↔r and •�r ′ commute for any r and r ′. With this and given

a ⊗ b ∈ A
n1,...,nq
m1,...,m p ⊗ A

n′1,...,n′q
m′1,...,m′p

, the shuffle product • : C H (p,q,U)• ⊗ C H (p,q,U)• →
C H (p,q,U)• is defined by the composition •�p ◦ · · · ◦ •�1 ◦ •↔q ◦ · · · ◦ •↔1 and a multipli-
cation � by tensor factors,

A
n1,...,nq
m1,...,m p ⊗ A

n′1,...,n′q
m′1,...,m′p

•�p ···•�1 •↔q ···•↔1−→

A
n1+n′1,...,nq +n′q
m1+m′1,...,m p+m′p

⊗ A
n1+n′1,...,nq +n′q
m1+m′1,...,m p+m′p

�−→ A
n1+n′1,...,nq +n′q
m1+m′1,...,m p+m′p

,

a • b := (−1)|a|·(m
′+n′)+nq ·(m′+n′−n′q )+···+m2·m′1 · � ◦ •�p ◦ · · · ◦ •�1 ◦ •↔q ◦ · · · ◦ •↔1 (a⊗ b),

where �(
⊗

x ax ,
⊗

x bx ) = ⊗x (ax · bx ) denotes the multiplication of the individual
tensor factors.

The shuffle map is graded commutative and associative, and D is a derivation of the
shuffle map.

Finally, we define the iterated integral map I t (p,q,U) : C H (p,q,U)• → �(N (p, q,U)).
Rather than defining it via an explicit formula as in the previous Definitions 2.4 and 3.2,
it will now be more convenient to use the pullback description for our definition.

Definition 4.3. Subdivide the torus into a grid determined by (
m1 × · · · × 
m p ) ×
(
n1 × · · · ×
nq ) as in Fig. 3.

Denote by m = m1 + · · · + m p, and n = n1 + · · · + nq . We have an evaluation
map ev,

N (p, q,U)× (
m1 × · · · ×
m p )× (
n1 × · · · ×
nq )
ev−→ M (m+p)×(n+q),

(
γ, (0 = tk

0 ≤ tk
1 ≤ · · · ≤ tk

mk
≤ 1)k=1,...,p, (0 = u�0 ≤ u�1 ≤ · · · ≤ u�n� ≤ 1)�=1,...,q

)

�→
(

γ

(
k − 1 + tk

i

p
,
�− 1 + u�j

q

))

1 ≤ k ≤ p, 0 ≤ i ≤ mk
1 ≤ � ≤ q, 0 ≤ j ≤ n�

.
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Fig. 3. Coordinates of m · n points on the torus determined by (
m1 × · · · ×
m p )× (
n1 × · · · ×
nq )

Note that starting from γ ∈ N (p, q,U), the evaluation map lands in the corresponding
open set Ui(k,�) , or intersection of open sets for edges or vertices, e.g.

γ

(
k − 1

p
,
�− 1

q

)

∈ U v
k,� = Ui(k,�) ∩Ui(k,�−1) ∩Ui(k−1,�) ∩Ui(k−1,�−1) .

Thus, we can define the iterated integral I t : C H (p,q,U)• → �(N (p, q,U)) to be the
pullback along ev composed with integration along the fiber,

N (p, q,U)× (
m1 × · · · ×
m p )× (
n1 × · · · ×
nq )
ev ��

∫
(
m1×···×
m p )×(
n1×···×
nq )

��

M (m+p)×(n+q)

N (p, q,U)

I t (p,q,U)(a) :=
∫

(
m1×···×
m p )×(
n1×···×
nq )

ev∗(a), for a ∈ A
n1,...,nq
m1,...,m p .

In order to exhibit the above definition as an explicit iterated integral over the tensor
factors of a, we note that for a T-space Y , the pullback of a form ω along T× Y → Y
is given by

ω(t, u) + dt ∧ ιtω(t, u) + du ∧ ιuω(t, u) + dtdu ∧ ιuιtω(t, u), (4.3)

where t and u are the canonical vector fields on Y coming from the two circle actions of
the first and second factors of T, respectively, and ω(t, u) is the pullback of ω at (t, u) ∈
T. Thus, when taking the integral over the variables k−1

p ≤ tk
1 ≤ · · · ≤ tk

mk
≤ k

p ∈ 
mk
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and �−1
q ≤ u�1 ≤ · · · ≤ u�m�

≤ �
q ∈ 
n� , and an element a as in (4.1), the iterated

integral becomes,

I t (p,q,U)(a) = ±
∫

(
m1×···×
m p )×(
n1×···×
nq )

p∧

k=1

q∧

�=1

[

avk,�

(
k − 1

p
,
�− 1

q

)

∧
mk∧

i=1

(

(a�e
k,�)i

(

tk
i ,
�− 1

q

)

+ dtk
i ∧ ιt(a�e

k,�)i

(

tk
i ,
�− 1

q

))

∧
n�∧

j=1

(

(a
←→e
k,� ) j

(
k − 1

p
, u�j

)

+ du�j ∧ ιu(a
←→e
k,� ) j

(
k − 1

p
, u�j

))

∧
mk∧

i=1

n�∧

j=1

(

(a f
k,�)i, j (t

k
i , u�j ) + dtk

i ∧ ιt(a f
k,�)i, j (t

k
i , u�j )

+du�j ∧ ιu(a f
k,�)i, j (t

k
i , u�j ) + dtk

i du�j ∧ ιuιt(a f
k,�)i, j (t

k
i , u�j )

)]

. (4.4)

Thus, for any of the variables tk
i (or u�j ), there is not just one unique form that depends

on this variable, but a whole row (or column) of forms that depend on the variable,
and integration over this variable occurs for exactly one differential dtk

i (respectively
du�j ). We will show below, that in specific cases (such as the holonomy function), it is
nevertheless possible to simplify the iterated integral and compute it.

Proposition 4.4. I t (p,q,U) commutes with differentials and products, i.e.,

I t (p,q,U)(D(a)) = dDR(I t (p,q,U)(a)), and

I t (p,q,U)(a • b) = I t (p,q,U)(a) ∧ I t (p,q,U)(b).

Proof. The proof is similar to [GTZ, Lem. 2.2.2, Prop. 2.4.6] and Proposition 5.6 below
(compare this also with [GJP, Prop. 1.6] and Proposition 3.6 above). We start with
comparing the differentials. For this proof we use the integration along a fiber formula
dDR

(∫
X ω
) = (−1)dim(X)

(∫
X dDR(ω)−

∫
∂X ω

)
for X = (
m1×· · ·×
m p )×(
n1×

· · · ×
nq ). With this, we have for a ∈ A
n1,...,nq
m1,...,m p ,

dDR(I t (p,q,U)(a)) = dDR

(∫

(
m1×···×
m p )×(
n1×···×
nq )

ev∗(a)
)

= (−1)m+n ·
(∫

(
m1×···×
m p )×(
n1×···×
nq )

ev∗(dDRa)

−
∫

∂((
m1×···×
m p )×(
n1×···×
nq ))

ev∗(a)
)

= (−1)m+n · I t (p,q,U)(dDR(a)
)

+
m+p∑

j=1

(−1)m+n+1+ j+1 · I t (p,q,U)(d�r,i (a)
)
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+
n+q∑

j=1

(−1)m+n+1+(m+p+ j+1) · I t (p,q,U)(d↔r,i (a)
)

= I t (p,q,U)(D(a)).

Next, we compare the shuffle and wedge product. We start with rewriting the wedge
product of two iterated integrals,

I t (p,q,U)(a) ∧ I t (p,q,U)(b)

=
∫

(
m1×···×
m p )×(
n1×···×
nq )

ev∗(a) ∧
∫

(

m′1×···×
m′p )×(
n′1×···×
n′q )

ev∗(b)

= (−1)ε
∫

((
m1 ×
m′1 )× · · · × (
m p ×
m′p ))
×((
n1 ×
n′1 )× · · · × (
nq ×
n′q ))

(ev, ev)∗(a ∧ b)

= (−1)ε
∑

σ1 ∈ S(m1,m′1)
. . .

σp ∈ S(m p ,m′p)

∑

ρ1 ∈ S(n1, n′1)
. . .

ρq ∈ S(nq , n′q )

∫

βσ1 (

m1+m′1 )× · · · × βσp (


m p+m′p )
×βρ1 (


n1+n′1 )× · · · × βρq (

nq +n′q )

(ev, ev)∗(a ∧ b),

where ε = |a| · (m′ + n′) + nq · (m′ + n′ − n′q) + · · · + m2 · m′1, and for a (k, �)-shuffle

σ ∈ S(k, �), the map βσ : 
k+� → 
k × 
�, (t1 ≤ · · · ≤ tk+�) �→ (tσ(1) ≤ · · · ≤
tσ(k), tσ(k+1) ≤ · · · ≤ tσ(k+�)) is used to decompose 
k × 
� = ⋃σ∈S(k,�) β

σ (
k+�).
Now, we have a commutative diagram,

N (p, q,U)
×(
m1+m′1 × . . . )
×(
n1+n′1 × . . . )

id×βσ1×···×βσp×βρ1×···×βρq
��

ev

��

N (p, q,U)
×((
m1 ×
m′1)× . . . )
×((
n1 ×
n′1)× . . . )

(ev,ev)

��

M
(m + p + m′ + p′)
×(n + q + n′ + q ′)

diag �� M (m+p+m′+p′)×(n+q+n′+q ′)

×M (m+p+m′+p′)×(n+q+n′+q ′)
η′σ,ρ×η′′σ,ρ �� M (m+p)×(n+q)

×M (m′+p′)×(n′+q ′).

Here, diag is the diagonal on M (m+p+m′+p′)×(n+q+n′+q ′) with m(′) = m(′
1
) + · · · + m(′

p
)

and n(′) = n(′1) + · · · + n(′q ), and η′σ,ρ : M (m+p+m′+p′)×(n+q+n′+q ′)→ M (m+p)×(n+q) and

η′′σ,ρ : M (m+p+m′+p′)×(n+q+n′+q ′)→ M (m′+p′)×(n′+q ′) are defined as

η′σ,ρ =
(
M�1,σ1(m1+1) ◦ · · · ◦ M�1,σ1(m1+m′1)

) ◦ · · · ◦ (M�p,σp(m p+1) ◦ · · · ◦ M�p,σ1(m p+m′p)
)

◦(M↔1,ρ1(n1+1) ◦ · · · ◦ M↔1,ρ1(n1+n′1)
) ◦ · · · ◦ (M↔q,ρq (nq +1) ◦ · · · ◦ M↔q,ρ1(nq +n′q )

)
,

η′′σ,ρ =
(
M�1,σ1(1)

◦ · · · ◦ M�1,σ1(m1)

) ◦ · · · ◦ (M�p,σp(1)
◦ · · · ◦ M�p,σ1(m p)

)

◦(M↔1,ρ1(1) ◦ · · · ◦ M↔1,ρ1(n1)

) ◦ · · · ◦ (M↔q,ρq (1) ◦ · · · ◦ M↔q,ρ1(nq )

)
,

where M�r,i : Mk×� ↪→ M (k+1)×� misses the (r +m1 +· · ·+mr−1 +i)th row, and, similarly,

M↔r,i : Mk×� ↪→ Mk×(�+1) misses the (r + n1 + · · · + nr−1 + i)th column. If we further
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set

0 = t1 ≤ · · · ≤ r

p
= tr+

∑r−1
i=1 mi +m′i

≤ tr+1+
∑r−1

i=1 mi +m′i
≤ · · · ≤ tr+

∑r
i=1 mi +m′i

≤ · · · ≤ tm+p+m′+p′ ≤ 1 ∈ 
m1+m′1 × · · · ×
mr +m′r × · · · ×
m p+m′p ,

σ ′ : {1, . . . ,m + p} → {1, . . . ,m + p + m′ + p′}, σ ′(r +
r−1∑

i=1

mi ) = r +
r−1∑

i=1

mi + m′i ,

and for 1 ≤ j ≤ mr : σ ′(r + j +
r−1∑

i=1

mi ) = r + σr ( j) +
r−1∑

i=1

mi + m′i ,

σ ′′ : {1, . . . ,m′ + p′} → {1, . . . ,m + p + m′ + p′}, σ ′′(r +
r−1∑

i=1

m′i ) = r +
r−1∑

i=1

mi + m′i ,

and for 1 ≤ j ≤ m′r : σ ′′(r + j +
r−1∑

i=1

m′i ) = r + σr ( j) +
r−1∑

i=1

mi + m′i ,

and similar definitions for u1 ≤ · · · ≤ un+q+n′+q ′ , ρ′, and ρ′′, then we can check that the
above diagram commutes:

(ev, ev) ◦ (id × βσ1 × · · · × βρq )(γ, t1 ≤ · · · ≤ tm+p+m′+p′ , u1 ≤ · · · ≤ un+q+n′+q ′)

=
(
γ (tσ ′(1), uρ′(1)), . . . , γ (tσ ′(m+p), uρ′(n+q)), γ (tσ ′′(1), uρ′′(1)), . . . ,

γ (tσ ′′(m′+p′), uρ′′(n′+q ′))
)

= (η′σ,ρ × η′′σ,ρ) ◦ diag ◦ ev(γ, t1 ≤ · · · ≤ tm+p+m′+p′ , u1 ≤ · · · ≤ un+q+n′+q ′).

(Note also that in the above diagram, the evaluation maps really land in the correspond-
ing subsets

∏p
k=1

∏q
�=1(Ui(k,�) )

×(mk×n�) × (U�e
k,�)
×mk × (U←→ek,� )

×n� × U v
k,� ⊂ Mm×n ,

etc., as described in Definition 4.3, which we have suppressed for better readability.)
Thus,

I t (p,q,U)(a) ∧ I t (p,q,U)(b)

=
∑

σ1,...,σp

∑

ρ1,...,ρq

(−1)ε · sgn ·
∫




ev∗ ◦ diag∗((η′σ,ρ)∗(a) ∧ (η′′σ,ρ)∗(b)),

where we abbreviated sgn = sgn(σ1) · . . . · sgn(σp) · sgn(ρ1) · . . . · sgn(ρq), and 
 =
(
m1+m′1 × · · · ×
m p+m′p )× (
n1+n′1 × · · · ×
nq +n′q ). Now, the η′σ and η′′σ add degen-
eracies to the a and b which become on forms, (M↔r,i |...)∗ = s↔r,i : A

n1,...,nr ,...,nq
m1,...,m p →

A
n1,...,nr +1,...,nq
m1,...,m p , and similar for (M�r,i |...)∗ = s�r,i . This, together with diag, which is the

�-product after passing to forms, induces the shuffle product in the above equation,

I t (p,q,U)(a) ∧ I t (p,q,U)(b) =
∫




ev∗(a • b) = I t (p,q,U)(a • b).

This completes the proof of the proposition. ��
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4.2. 2-Holonomy along the torus. Now, we use local (descent) data of an abelian gerbe
with connection to define an element in the Hochschild complex. We start by recalling
the local data (descent) data determining an abelian gerbe with connection, see e.g. [GR].

Definition 4.5. Let M be a manifold, and let {Ui }i be a sufficiently fine open cover of
M. We denote by Ui1,...,ir =

⋂
i=i1,...,ir Ui . The local data of abelian gerbe G with con-

nection is given by gi, j,k ∈ �0(Ui, j,k,U (1)), Ai, j ∈ �1(Ui, j ,R), and Bi ∈ �2(Ui ,R),
which are symmetric in their indices,

Ai, j = −A j,i , and gi, j,k = g−1
j,i,k = g j,k,i

and subject to the relations,

g j,k,l g
−1
i,k,l gi, j,l g

−1
i, j,k = 1 on Ui, j,k,l ,

gi, j,k · (A j,k − Ai,k + Ai, j ) = i · dgi, j,k on Ui, j,k,

B j − Bi = d Ai, j on Ui, j .

In the expressions above, and what follows, the subscript i is an index, while otherwise
i denotes

√−1.
The second relation may also be rewritten as A j,k − Ai,k + Ai, j = i · g−1

i, j,kdgi, j,k =
i ·d(log(gi, j,k)). The last relation implies d Bi = d B j on Ui, j , so that there is an induced
closed 3-form H ∈ �3(M,R) given by H = d Bi on Ui . This form will be referred to
as the 3-curvature. For more details, see e.g. [GR, Sect. 2.2].

There is a notion of equivalence on local data which then specifies an abelian gerbe
with connection up to isomorphism. Since the 3-curvature and 2-holonomy of an abelian
gerbe with connection are known to depend only on the gerbe with connection, and not
the local data, the equivariant Chern character we construct below will also depend only
on the abelian gerbe with connection, see Proposition 4.15 and the remarks following.
So, from here on it suffices to work only with local data.

Remark 4.6. There is another, equivalent description of an abelian gerbe with connec-
tion, which we mention briefly in this remark. The data of a gerbe may be given by a
surjective submersion Y → M and a principle S1-bundle P over Y [2] = Y ×M Y , with
some mild compatibilities required. The data of a connective structure on a gerbe is given
by A ∈ �1(P;R) and B ∈ �2(Y ;R) such that d A = π∗1 (B) − π∗2 (B). It follows that
we have a well defined closed 3-form H on M . To see that this description is equivalent
with the one in Definition 4.5 above, we refer the reader to [GR, Sect. 2.3].

Definition 4.7. Starting from a connection on an abelian gerbe with local data gi, j,k ∈
�0(Ui, j,k,U (1)), Ai, j ∈ �1(Ui, j ,R), and Bi ∈ �2(Ui ,R), we take the (p+1)×(q +1)
matrix

B̃(k,�) = 1⊗ · · · ⊗ B(k,�) ⊗ · · · ⊗ 1 ∈ A0,...,1,...,0
0,...,1,...,0,

with the 2-form B(k,�) = Bi(k,�) at the (k, �)th entry on the open set Ui(k,�) and 1s else-
where, the (p + 1)× q matrix

Ã↔(k,�) = 1⊗ · · · ⊗ A↔(k,�) ⊗ · · · ⊗ 1 ∈ A0,...,1,...,0
0,...,0 ,
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with the 1-form A↔(k,�) = Ai(k−1,�),i(k,�) at the (k, �)th horizontal edge on the open set U
←→e
k,�

and 1s elsewhere, the p × (q + 1) matrix

Ã�(k,�) = 1⊗ · · · ⊗ A�(k,�) ⊗ · · · ⊗ 1 ∈ A0,...,0
0,...,1,...,0,

with the 1-form A�(k,�) = Ai(k,�),i(k,�−1) at the (k, �)th vertical edge on the open set U�e
k,�

and 1s elsewhere, and the p × q matrix

g̃(k,�) = 1⊗ · · · ⊗ g(k,�) ⊗ · · · ⊗ 1 ∈ A0,...,0
0,...,0,

with the 0-form g(k,�) = gi(k,�),i(k−1,�),i(k−1,�−1) |Uv
k,�
· g−1

i(k,�),i(k,�−1),i(k−1,�−1)
|Uv

k,�
∈ Avk,� at

the (k, �)th vertex on the open set U v
k,� and 1s elsewhere.

Note that all elements B̃(k,l), Ã↔(k,�), Ã�(k,�), g̃(k,�) ∈ C H (p,q,U)
0 are elements of total

degree zero.
The choice of elements in the previous definition is such that under the iterated integral

map, the elements I t (p,q,U)(B̃(k,l)), I t (p,q,U)( Ã↔(k,�)), I t (p,q,U)( Ã�(k,�)), I t (p,q,U)(g̃(k,�))
∈ �0(N (p, q,U)) can be interpreted as functions on N (p, q,U) in an explicit way as
follows.

Lemma 4.8. We have for γ ∈ N (p, q,U),

I t (p,q,U)(B̃(k,l))(γ ) =
∫

f
k, �

γ ∗(Bi(k,�) ),

I t (p,q,U)( Ã↔(k,�))(γ ) =
∫

←→e
k, �

γ ∗(Ai(k−1,�),i(k,�) ),

I t (p,q,U)( Ã�(k,�))(γ ) =
∫

� e
k, �

γ ∗(Ai(k,�),i(k,�−1) ),

I t (p,q,U)(g̃(k,�))(γ ) = gi(k,�),i(k−1,�),i(k−1,�−1) (γ (
v

k, �)) · g−1
i(k,�),i(k,�−1),i(k−1,�−1)

(γ (
v

k, �)).

In the above integrals, the induced orientations of the cells from Fig. 2 is given as fol-
lows: f

k, � has the induced orientation from the plane R
2,
←→e
k, � is oriented from left to right,

and � e
k, � is oriented from top to bottom.

Proof. We have that I t (p,q,U)(B̃(k,l))(γ ) =
∫

(
0 × · · · ×
1 × · · · ×
0)

×(
0 × · · · ×
1 × · · · ×
0)

ev∗(1⊗ · · · ⊗ B(k,�) ⊗ · · · ⊗ 1)(γ ) =
∫

f
k, �

γ ∗(Bi(k,�) ).

Furthermore, we have, I t (p,q,U)( Ã↔(k,�))(γ ) =
∫

(
0 × · · · ×
0)

×(
0 × · · · ×
1 × · · · ×
0)

ev∗(1⊗· · ·⊗A↔(k,�)⊗· · ·⊗1)(γ ) =
∫

←→e
k, �

γ ∗(Ai(k−1,�),i(k,�) ).
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and a similar calculation for I t (p,q,U)( Ã�(k,�)). Finally,

I t (p,q,U)(g̃(k,�))(γ ) =
∫

(
0×···×
0)×(
0×···×
0)

ev∗(1⊗ · · · ⊗ g(k,�) ⊗ · · · ⊗ 1)(γ )

= gi(k,�),i(k−1,�),i(k−1,�−1) (γ (
v

k, �)) · g−1
i(k,�),i(k,�−1),i(k−1,�−1)

(γ (
v

k, �)).

This completes the proof of the lemma. ��
Definition 4.9. With this notation, define h(p,q,U) ∈ C H (p,q,U)

0 to be

h(p,q,U) = exp

⎛

⎝
∑

k,�

i B̃(k,�) + i Ã↔(k,�) + i Ã�(k,�)

⎞

⎠ •
∏

k,�

g̃(k,�),

where exp is the exponential under the shuffle product •, and let hol(p,q,U) ∈
�0(N (p, q,U),C) be given by

hol(p,q,U) = I t (p,q,U)(h(p,q,U)).

Remark 4.10. We can give an explicit formula for hol(p,q,U) by using the combinatorics
of the entries in the matrix for h(p,q,U). In fact, we obtain, that

h(p,q,U) =
∑

m1, . . . ,m p ≥ 0
n1, . . . , nq ≥ 0

∑

allowable
matrix M

±a(M), where a(M) ∈ C H (p,q,U)
0 .

Here an allowable matrix is defined as an (m1 + · · ·+m p + p)× (n1 + · · ·+nq +q)matrix
with entries 0’s, 1’s or 2’s, such that each vertex entry (i.e. entries at (m1 + · · · + mk +
k + 1, n1 + · · · + n� + � + 1),∀k, �) has 0’s, there is exactly one 2 in each row except for
the edge rows (i.e. rows 1,m1 + 2,m1 + m2 + 3, . . .), and exactly one 2 in each column
except for the edge columns (i.e. columns 1, n1 + 2, n1 + n2 + 3, . . .), and 1’s everywhere
else. The Hochschild chain a(M) is given by replacing 0’s by the appropriate g(k,�), and

the 2’s by the appropriate A↔(k,�), A�(k,�), or B(k,�). An example is displayed in Fig. 4.

With this, we can write a formula for I t (p,q,U)(a(M)) for an allowable matrix M ,
applied to an element γ ∈ N (p, q,U), up to sign, as follows,

I t (p,q,U)(a(M)) = ±
p∏

k=1

q∏

�=1

g(k,�)

(

γ

(
k − 1

p
,
�− 1

q

))

·
∫

(
m1×···×
m p )×(
n1×···×
nq )

∧

entries “2” in M ,
given at position (r, s)

in the (k, �)’s subrectangle

X(k,�)

(
k − 1 + tk

r

p
,
�− 1 + u�s

q

)

×dt1
1 . . . dtq

mq du1
1 . . . du p

n p ,

where

X(k,�)(t, u) =
⎧
⎨

⎩

ιu A↔(k,�)(u), if the “2” is on an edge row

ιt A�(k,�)(t), if the “2” is on an edge column
ιuιt B(k,�)(t, u), otherwise

,
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Fig. 4. An example of a(M) for an allowable matrix M , with p = 2,m1 = 3,m2 = 4, and q = 3, n1 =
6, n2 = 3, n3 = 4; edge rows and columns are indicated in gray

and where t and u being the two natural vector fields on MT as before. To justify this
formula, note that the integral is non-zero only for the terms that have a volume form for
the fiber, and Eq. (4.3) provides dtk

r and du�s only for the entries of “2” in the matrix M .

Recall the 2-holonomy of an abelian gerbe with connection, along a torus, can be
defined as follows. Let γ ∈ MT and subdivide the torus T by some faces f , edges e and
vertices v. Choose open sets Uiv for each vertex v, Uie for each edge e, and Ui f for each
face f , and assume that γ | f ⊂ Ui f , γ |e ⊂ Uie , and γ (v) ∈ Uiv for all faces f , edges e,

and vertices v. Then, the holonomy function hol : MT→ U (1) is defined by

hol(γ ) := exp

⎛

⎝
∑

f

i
∫

f
γ ∗(Bi f )−

∑

e⊂ f

i · ρ(e, f )
∫

e
γ ∗(Aie,i f )

⎞

⎠

×
∏

v⊂e⊂ f

gρ(v,e, f )
iv,ie,i f

(γ (v)) (4.5)

where gi, j,k, Ai, j and B j are local (descent) data of the abelian gerbe with connection.
Here, we sum over all faces f in the first sum, all possible subset combinations e ⊂ f

in the second sum, and all possible subset combinations v ⊂ e ⊂ f in the last product.
Furthermore, ρ(e, f ) ∈ {+1,−1} with ρ(e, f ) = +1 iff e has the induced orientation
coming from f , and ρ(e, f ) = −1 otherwise, and ρ(v, e, f ) = ρ(e, f ) if v is the
beginning point of e, and ρ(v, e, f ) = −ρ(e, f ) otherwise (cf. Definition 5.8).

It is a well known fact that the 2-holonomy hol is independent of the subdivision,
and the choice of local data, i.e. depends only on the abelian gerbe with connection, see
e.g. [GR, Sect. 2.2] or [RS, Sect. 2.2] and Corollary 5.11 below.

Proposition 4.11. The 2-holonomy along γ ∈ MT is given by the local iterated integral
I t (p,q,U) map applied to h(p,q,U), evaluated at γ :

hol(p,q,U)(γ ) = hol(γ ).

Proof. In order to calculate hol(p,q,U)(γ ) = I t (p,q,U)(h(p,q,U))(γ ), we make the
following choices. Subdivide the torus as in Fig. 2, and choose the open sets to be
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Ui f = Uie = Uiv = Ui(k,�) for the face f = f
k, �, the edges e = ←→ek, � or e = � e

k, �, and for

the vertex v = v

k, �. Now, under this choice, the index ie for each edge e coincides with
one of the two faces adjacent to e, i.e. i f

k, �

= i←→e
k, �

= i� e
k, �

= i(k,�), so that Ai←→e
k, �

,i f
k, �

=

Ai� e
k, �

,i f
k, �

= 0. Furthermore, a straightforward check shows that for a fixed vertex v = v

k, �,

the above choice gives
∏
v⊂e⊂ f gρ(v,e, f )

iv,ie,i f
= gi(k,�),i(k−1,�),i(k−1,�−1) · g−1

i(k,�),i(k,�−1),i(k−1,�−1)
.

Thus, under the above choices the right-hand side of Eq. (4.5) becomes,

hol(γ )

= exp

⎛

⎝
∑

k,�

i
∫

f
k, �

γ ∗(Bi(k,�) ) + i
∫

←→e
k, �

γ ∗(Ai(k−1,�),i(k,�) ) + i
∫

� e
k, �

γ ∗(Ai(k,�),i(k,�−1) )

⎞

⎠

·
∏

k,�

gi(k,�),i(k−1,�),i(k−1,�−1) · g−1
i(k,�),i(k,�−1),i(k−1,�−1)

. (4.6)

Now, we may use Lemma 4.8 and Proposition 4.4 to see that this coincides with

exp

⎛

⎝
∑

k,�

i · I t (p,q,U)(B̃(k,�)) + i · I t (p,q,U)( Ã↔(k,�)) + i · I t (p,q,U)( Ã�(k,�))

⎞

⎠ (γ )

·
∏

k,�

I t (p,q,U)(g̃(k,�))(γ )

= I t (q,p,U)
⎛

⎝exp

⎛

⎝
∑

k,�

i B̃(k,�) + i Ã↔(k,�) + i Ã�(k,�)

⎞

⎠ •
∏

k,�

g̃(k,�)

⎞

⎠ (γ )

= I t (p,qU)(h(p,q,U))(γ ) = hol(p,q,U)(γ ).

But this is the claim, which thus completes the proof of the proposition. ��
Corollary 4.12. The functions I t (p,q,U)(h(p,q,U)) ∈ �0(N (p, q,U),C) glue together
to give a global function hol ∈ �0(MT,C) with

hol|N (p,q,U) = hol(p,q,U).

4.3. Higher 2-holonomies along the torus. In analogy with Sect. 3 for vector bundles,
we define higher 2-holonomies in a way that allows us to build an equivariantly closed
form on the torus mapping space MT. In fact, we define a sequence of forms hol2k,2� ∈
�(MT,C), that may be put together in a variety of ways to give an equivariantly closed
form on the torus mapping space MT. The guiding diagram, that is the analogy of Fig. 1
for the vector bundle case, is the diagram depicted in Fig. 5.

Here, we have set hol0,0 = hol from the previous Subsect. 4.1. More precisely,
diagram 5 depicts the relation,

dDR(hol2k,2�) = −ιt(hol2k+2,2�) = −ιu(hol2k,2�+2), ∀k, � ∈ N0.
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Fig. 5. Diagram for hol2k,2�’s, stating that for all k, � ≥ 0, d(hol2k,2�) = −ιt(hol2k+2,2�) =−ιu(hol2k,2�+2)

Let us first make some motivating remarks. One can calculate that dDR(hol) is the 1-
form on MT given by i ·I t (H)∧hol, where H = d B is the 3-curvature (see Theorem 4.13
below). Recall the similar situation in the previous section, where for a vector bundle,
dDR(hol) = −I t (1⊗ R)∧ hol, where R is the 2-curvature (see Proposition 2.10), and
we illustrated how this differential 1-form on L M can be expressed using E = ρ∗ ◦ I t .
Namely, it was the image under E of an element of local Hochschild complex, roughly
given by shuffling Rdt into the expression whose iterated integral is the holonomy.
Similarly, shuffling in (Rdt)⊗k gave all the higher holonomies.

In much the same way, we define a map E for the gerbe-torus case, and define ele-
ments given by shuffling terms given by the 3-curvature H , using these to define the
higher holonomies for this gerbe-torus case. These will satisfy the equations above and
the total sum will give an equivariantly closed form on MT.

First we start by defining a map E (p,q,U), analogously to E (p,U) from Definition 3.9.

Definition 4.13. For a choice of p, q ∈ N and a choice of open sets U = {Ui(k,�)}k,� of M,
we have induced open sets U×T = {Ui(k,�)×T}k,� of M×T. We have the iterated integral

map I t (p,q,U×T) : C H (p,q,U×T)• → �(N (p, q,U × T)) for N (p, q,U × T) ⊂ (M ×
T)T, and we furthermore define ρN : N (p, q,U)→ N (p, q,U ×T), γ �→ ρN (γ ) by
setting ρN (γ ) : T → M × T, ρN (γ )(t, u) = (γ (t, u), (−t,−u)). Using these maps,

we define the extended iterated integral E (p,q,U) : C H (p,q,U×T)• → �(N (p, q,U)) as
the composition E (p,q,U) := (ρN )∗ ◦ I t (p,q,U×T),

E (p,q,U) : C H (p,q,U×T)•
I t (p,q,U×T)−→ �(N (p, q,U × T))

(ρN )∗−→ �(N (p, q,U)).

With this, we can now define higher holonomy elements hol(p,q,U)
2k,2� ∈

�(N (p, q,U),C).
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Definition 4.14. If we now denote by dt ′ and du′ the two canonical 1-forms on the
torus, then Hdt ′ and Hdu′ are 4-forms in �4(M × T). The restriction of these forms
to Ui(r,s) ×T is denoted by (Hdt ′)(r,s), (Hdu′)(r,s) ∈ �4(Ui(r,s) ×T), and placing them
at the (r, s)th spot in the Hochschild complex will be denoted by

H̃dt ′(r,s) = 1⊗ · · · ⊗ (Hdt ′)(r,s) ⊗ · · · ⊗ 1 ∈ A0,...,1,...,0
0,...,1,...,0,

H̃du′(r,s) = 1⊗ · · · ⊗ (Hdu′)(r,s) ⊗ · · · ⊗ 1 ∈ A0,...,1,...,0
0,...,1,...,0.

Denote by h
(p,q,U)
2k,2� ∈ C H (p,q,U×T)

2k+2� the following sum:

h
(p,q,U)
2k,2� :=

∑

k(1,1), . . . , k(p,q) ≥ 0
k(1,1) + · · · + k(p,q) = k

∑

�(1,1), . . . , �(p,q) ≥ 0
�(1,1) + · · · + �(p,q) = �

p∏

r=1

q∏

s=1

1

k(r,s)! · �(r,s)!

·
(

i H̃dt ′(r,s)
)•k(r,s) •

(
i H̃du′(r,s)

)•�(r,s) • exp
(

i B̃(r,s) + i Ã↔(r,s) + i Ã�(r,s)
)
• g̃(r,s).

Furthermore, hol(p,q,U)
2k,2� ∈ �(N (p, q,U),C) is defined as

hol(p,q,U)
2k,2� := E (p,q,U) (h(p,q,U)

2k,2�

)
∈ �2k+2�(N (p, q,U),C).

The following proposition expresses each higher 2-holonomy as a product of DeR-
ham forms on the total mapping space MT.

Proposition 4.15. The locally defined forms hol(p,q,U)
2k,2� define a global (2k + 2�)-form

hol2k,2� ∈ �2k+2�(MT,C), with the restrictions hol2k,2�
∣
∣N (p,q,U) = hol(p,q,U)

2k,2� . Explic-
itly, this function is given by

hol2k,2� = (−1)�

k! · �! · i
k+� ·

(∫

T

(ιu H)dtdu

)∧k

·
(∫

T

(ιt H)dtdu

)∧�
· hol. (4.7)

In particular, hol0,0 = hol.

Since the 3-curvature and 2-holonomy depend only on the abelian gerbe with con-
nection, and not the local (descent) data, the formula in the proposition above shows this
is also the case for hol2k,2�, for all k and �.

Proof. We will show that (4.7) holds on any open set N (p, q,U) ⊂ MT for some local
data U . The last statement about hol0,0 does not include any dt ′ or du′, so that

hol(p,q,U)
0,0 = (ρN )∗ ◦ I t (p,q,U×T)

(
h
(p,q,U)
0,0

)
= I t (p,q,U) (h(p,q,U)) = hol(p,q,U).
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Now, since both (ρN )∗ and I t (p,q,U×T) are algebra maps, we obtain,

hol(p,q,U)2k,2� =
∑

k(1,1) + · · · + k(p,q) = k
�(1,1) + · · · + �(p,q) = �

( p∏

r=1

q∏

s=1

1

k(r,s)! · E
(p,q,U) (i H̃dt ′(r,s)

)∧k(r,s)
)

·
( p∏

r=1

q∏

s=1

1

�(r,s)! · E
(p,q,U) (i H̃du′(r,s)

)∧�(r,s)
)

·E (p,q,U)
( p∏

r=1

q∏

s=1

exp
(

i B̃(r,s) + i Ã↔(r,s) + i Ã�(r,s)
)
• g̃(r,s)

)

.

The last factor is evaluated as

E (p,q,U)
( p∏

r=1

q∏

s=1

exp
(

i B̃(r,s) + i Ã↔(r,s) + i Ã�(r,s)
)
• g̃(r,s)

)

= hol(p,q,U)
0,0 = hol(p,q,U), (4.8)

so that

hol(p,q,U)2k,2� =
∑

k(1,1)+···+k(p,q)=k

( p∏

r=1

q∏

s=1

1

k(r,s)! · E
(p,q,U) (i H̃dt ′(r,s)

)∧k(r,s)
)

·
∑

�(1,1)+···+�(p,q)=�

( p∏

r=1

q∏

s=1

1

�(r,s)! · E
(p,q,U) (i H̃du′(r,s)

)∧�(r,s)
)

· hol(p,q,U)

= 1

k!

( p∑

r=1

q∑

s=1

E(p,q,U) (i H̃dt ′(r,s)
)
)∧k

· 1

�!

( p∑

r=1

q∑

s=1

E(p,q,U) (i H̃du′(r,s)
)
)∧�

·hol(p,q,U).

We claim that

E (p,q,U) (H̃dt ′(r,s)
)
=
∫


1×
1
(ιu H)

(r − 1 + t

p
,

s − 1 + u

q

)
dtdu, (4.9)

E (p,q,U) (H̃du′(r,s)
)
= −

∫


1×
1
(ιt H)

(r − 1 + t

p
,

s − 1 + u

q

)
dtdu. (4.10)

Before proving these identities, we show how to finish the proof using (4.9) and (4.10).
Summing (4.9) and (4.10) over r = 1, . . . , p and s = 1, . . . , q, we obtain

hol(p,q,U)
2k,2� = 1

k!
(

i ·
∫


1×
1
(ιu H)(t, u)dtdu

)∧k

· 1
�!
(

(−i) ·
∫


1×
1
(ιu H)(t, u)dtdu

)∧�
· hol(p,q,U).

Thus, we see that Eq. (4.7) holds locally on any N (p, q,U). Equation (4.7) does
in fact define a global 2k + 2�-form MT, since hol is globally defined (see Cor-
ollary 4.12), and so are

∫
T
ιu Hdtdu and

∫
T
ιt Hdtdu, since H is global on M .
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(For example,
∫
T
ιu Hdtdu may also be defined via the extended iterated integral

E (1,1,{M})
(
H̃dt ′(1,1)

) ∈ �(N (1, 1, {M})) of the global cover U = {M} for which
N (1, 1, {M}) = MT.)

It remains to prove Eqs. (4.9) and (4.10).

Proof of (4.9) and (4.10). To prove the two equations, we will need to consider vector
fields on MT as well as vector fields on (M × T)T. Since the latter space has two nat-
ural T actions, we will distinguish them by writing the torus in the base with a prime,
i.e. we write the space as (M × T

′)T, where T
′ = T. The two natural vector fields on

MT are denoted by t and u, and similarly t(M × T
′) and u(M × T

′) are the vector
fields on (M × T

′)T coming from the T action in the exponent, and ∂/∂t ′ and ∂/∂u′
are the vector fields on (M × T

′)T coming from the T action in the base T = T
′. Now,

ρN : N (p, q,U) → N (p, q,U × T
′), ρN : γ �→ (γ,−id), from Definition 4.13 is

T-equivariant, where the T action on (M × T
′)T is the diagonal action of both tori T

and T
′,

(t, u).ρN (γ ) = (t, u).(γ (_),−id(_)) = (γ (_ + (t, u)),−id(_ + (t, u)) + (t, u))

= (γ (_ + (t, u)),−id(_)) = ((t, u).γ,−id) = ρN ((t, u).γ ).

Thus, we see that (ρN )∗(t) = t(M × T
′) + ∂/∂t ′ and similarly (ρN )∗(u) = u(M ×

T
′) + ∂/∂u′. Note furthermore that ι(ρN )∗v(dt ′) = ι(ρN )∗v(du′) = 0 for any vector field

v, since ρN : γ �→ (γ,−id) is constant on the second factor.
With these remarks, we calculate E (p,q,U)(H̃dt ′(r,s)

) ∈ �2(N (p, q,U)) by applying
it to two vectors fields v and w on N (p, q,U) as follows,

E (p,q,U)
(

H̃dt ′(r,s)
)
(v,w) = (ρN )∗ ◦ I t (p,q,U×T

′)
(

H̃dt ′(r,s)
)
(v,w)

=
∫

(
0 × · · · ×
1 × · · · ×
0)

×(
0 × · · · ×
1 × · · · ×
0)

ev∗(1⊗ · · · ⊗ Hdt ′(r,s) ⊗ · · · ⊗ 1)((ρN )∗v, (ρN )∗w)

=
∫


1×
1
dtdu ∧ ιu(M×T′)ιt(M×T′)(H ∧ dt ′)

(r−1+t

p
,

s−1+u

q

)
((ρN )∗v, (ρN )∗w).

where we have used from (4.3) that
∫

I×J ev∗(ω)=∫I×J dtdu∧ιu(M×T′)ιt(M×T′)ω(t, u),
for any intervals I and J . Using the remarks from the first paragraph, we obtain that this
is equal to

∫


1×
1
dtdu ∧ (ι(ρN )∗u − ι∂/∂u′)(ι(ρN )∗t − ι∂/∂t ′)

×(H ∧ dt ′)
(r − 1 + t

p
,

s − 1 + u

q

)
((ρN )∗v, (ρN )∗w)

=
∫


1×
1
dtdu∧(ι(ρN )∗u)(−ι∂/∂t ′)(H ∧ dt ′)

(r − 1+t

p
,

s−1+u

q

)
((ρN )∗v, (ρN )∗w)

=
∫


1×
1
dtdu ∧ (ι(ρN )∗u)H

(r − 1 + t

p
,

s − 1 + u

q

)
((ρN )∗v, (ρN )∗w)

=
∫


1×
1
dtdu ∧ (ιu)H

(r − 1 + t

p
,

s − 1 + u

q

)
(v,w).
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This shows (4.9), and a similar calculation for E (p,q,U)(H̃du′(r,s)
)

(with an addi-
tional minus coming from commuting (−ι∂/∂u′)(ι(ρN )∗t) = (ι(ρN )∗t)(ι∂/∂u′)) also shows
Eq. (4.10). ��

This completes the proof of Proposition 4.15. ��

We may rewrite hol(p,q,U)
2k,2� , at least partially, in a more explicit way using the notion

of allowable matrix as defined in Remark 4.10.

Remark 4.16. We have for a torus (γ : T→ M) ∈ N (q, p,U), that

hol(p,q,U)2k,2� |γ =
∑

m1, . . . ,m p ≥ 0
n1, . . . , nq ≥ 0

∑

allowable
matrix M

size m × n

∑

K , L ⊂ {entries of 2’s in M
that are not in an edge
row or edge column}

K ∩ L = ∅, |K | = k, |L| = �

±
q∏

i=1

p∏

j=1

g(i, j)

(

γ

(
i − 1

q
,

j − 1

p

))

·
∫

(
m1×···×
mq )×(
n1×···×
n p )

∧

entries “2” in M ,
given at position (r, s)

in the (i, j)’s subrectangle

X(i, j)

(
i − 1 + t i

r

q
,

j − 1 + u j
s

p

)

×dt1
1 . . . du p

n p ,

where

X(i, j)(t, u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ιu A↔(i, j)(u), if the “2” is on an edge row

ιt A�(i, j)(t), if the “2” is on an edge column
ιu H(t, u), if the “2” is at a position in K
ιt H(t, u), if the “2” is at a position in L
ιtιu B(i, j)(t, u), otherwise

.

Sketch of proof. It is hol(p,q,U)
2k,2� := (ρN )∗ ◦ I t (q,p,U×T)

(
h
(p,q,U)
2k,2�

)
, and similarly to

Remark 4.10 we can write,

h
(p,q,U)
2k,2� =

∑

m1, . . . ,m p ≥ 0
n1, . . . , nq ≥ 0

∑

allowable
matrix M
of size

(m + p)× (n + q)

∑

K , L ⊂ {entries of 2’s in M
that are not in an edge
row or edge column}

K ∩ L = ∅, |K | = k, |L| = �

±aK ,L(M),

where aK ,L(M) ∈ C H (p,q,U×T)
2k+2� . (4.11)

Here, the allowable matrices are the same as in Remark 4.10, and m = m1+· · ·+m p, n =
n1 + · · ·+nq . The Hochschild chain aK ,L(M) is given by replacing 0’s by the appropriate

g(k,�), and the 2’s by the appropriate A↔(r,s), A�(r,s), or B(r,s), except for 2’s in K or L ,
for which we place the appropriate (Hdt ′)(r,s) or (Hdu′)(r,s). An example is displayed
in Fig. 6.
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Fig. 6. An example of aK ,L (M), with |K | = 1, |L| = 2

With this, we can write a formula for I t (p,q,U×T)(aK ,L(M)) for an allowable matrix
M and choices of K and L , at a point (γ : T→ M ×T) ∈ N (p, q,U ×T), up to sign,
as follows,

I t (p,q,U×T)
(
aK ,L(M)

)∣∣
∣
γ
= ±

p∏

i=1

q∏

j=1

g(i, j)

(

γ

(
i − 1

p
,

j − 1

q

))

·
∫

(
m1×···×
m p )×(
n1×···×
nq )

∧

entries “2” in M ,
given at position (r, s)

in the (i, j)’s subrectangle

X(i, j)

(
i − 1 + t i

r

p
,

j − 1 + u j
s

q

)

×dt1
1 . . . duq

nq , (4.12)

where


mi = {0 ≤ t i
1 ≤ · · · ≤ t i

mi
≤ 1}


n j = {0 ≤ u j
1 ≤ · · · ≤ u j

n j ≤ 1}
and

X(i, j)(t, u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ιu A↔(i, j)(u), if the “2” is on an edge row

ιt A�(i, j)(t), if the “2” is on an edge column
ιtιu Hdt ′(t, u), if the “2” is at a position in K
ιtιu Hdu′(t, u), if the “2” is at a position in L
ιtιu B(i, j)(t, u), otherwise

with v and w being the two natural vector fields on (M × T)T coming from the torus
action of the exponent of (M × T)T. ��

For the next theorem, we denote by I t (H) := I t (1,1,{M})(H̃(1,1)) ∈ �1(MT) the
global 1-form, defined without subdividing the torus (i.e. p = q = 1), using the cover
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{M} for which N (1, 1, {M}) = MT, and where H̃(1,1) ∈ A1
1 is given by placing H ∈

�3(M) at the non-degenerate 2-simplex; cf. Definition 4.7.
We now state our main result from this section, namely that the forms hol2k,2� satisfy

the relation from Fig. 5.

Theorem 4.17. For all k, � ≥ 0, we have,

dDR(hol2k,2�) = −ιt(hol2k+2,2�) = −ιu(hol2k,2�+2), (4.13)

and all these expressions are equal to i · I t (H) · hol2k,2�.

Proof. First, we rewrite the I t (H) in terms of an iterated integral,

I t (H) =
∫

T

(ιuιt H)dtdu = ιu
∫

T

(ιt H)dtdu = −ιt
∫

T

(ιu H)dtdu.

We will use Eq. (4.7) from Proposition 4.15, and since ιt and ιu are derivations with
(ιt)

2 = (ιu)2 = 0, and ιt(hol) = ιu(hol) = 0 by degree reasons, we obtain

ιt(hol2(k+1),2�) = (k + 1) · ιt
(∫

T

ιu Hdtdu

)

· i

k + 1
hol2k,2� = −i · I t (H)hol2k,2�,

ιt(hol2k,2(�+1)) = (� + 1) · ιu
(∫

T

ιt Hdtdu

)

· (−i)

� + 1
hol2k,2� = −i · I t (H)hol2k,2�.

It remains to check that dDR(hol2k,2�) = i · I t (H) · hol2k,2�. We apply dDR to

hol(p,q,U)2k,2� which is given in Definition 4.14 as

E (p,q,U)
[( ∑

k(i, j),�(i, j)

∏

r,s

1

k(r,s)! · �(r,s)!
(

i H̃dt ′(r,s)
)•k(r,s) •

(
i H̃du′(r,s)

)•�(r,s) )

•
∏

r,s

exp
(

i B̃(r,s) + i Ã↔(r,s) + i Ã�(r,s)
)
• g̃(r,s)

]

. (4.14)

Here, E (p,q,U) = (ρN )∗ ◦ I t (p,q,U×T) is an algebra map, and dDR is a derivation, and

dDR ◦ (ρN )∗ ◦ I t (p,q,U×T)
(∑

r,s

H̃dt ′(r,s)
)

=
∑

r,s

(ρN )∗ ◦ dDR

∫


1×
1
ev∗(1 . . . Hdt ′(r,s) . . . 1)

=
∑

r,s

(ρN )∗
∫


1×
1
dDR ◦ ev∗(1 . . . Hdt ′(r,s) . . . 1)

−
∑

r,s

(ρN )∗
∫

∂(
1×
1)

ev∗(1 . . . Hdt ′(r,s) . . . 1) = 0,

(since dDR(Hdt ′) = 0, and summing the integral of the global form Hdt ′ over
∂(
1 × 
1) for all r, s gives the integral over ∂T = ∅). Similarly, we obtain that

dDR

(
E (p,q,U)

(
H̃du′(r,s)

)) = 0. The last factor in (4.14) is hol(p,q,U), cf. Eq. (4.8), so

that the claim dDR(hol2k,2�) = i · I t (H) · hol2k,2� follows from the following equation:

dDR(hol) = i · I t (H) · hol. (4.15)
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Proof of (4.15). (The proof is analogous to the proof of the general Proposition 5.12.)
We calcualte on a local set N (p, q,U) as,

hol(p,q,U)

= I t (q,p,U)
⎛

⎝exp

⎛

⎝
∑

k,�

i B̃(k,�) + i Ã↔(k,�) + i Ã�(k,�)

⎞

⎠ •
∏

k,�

g̃(k,�)

⎞

⎠

= exp

(∑

k,�

i ·
∫


1×
1
ev∗(1 . . . Bi(k,�)

∣
∣
∣ f
k, �

. . . 1)

+i ·
∫


1
ev∗(1 . . . Ai(k−1,�),i(k,�)

∣
∣
∣←→e
k, �

. . . 1) + i ·
∫


1
ev∗(1 . . . Ai(k,�),i(k,�−1)

∣
∣
∣� e
k, �

. . . 1)

)

·
∏

k,�

gi(k,�),i(k−1,�),i(k−1,�−1)

∣
∣
∣ v
k, �

· g−1
i(k,�),i(k,�−1),i(k−1,�−1)

∣
∣
∣ v
k, �

.

Since dDR is a derivation, we get that

dDR(hol(p,q,U))

= hol(p,q,U) ·
[

dDR

(∑

k,�

i ·
∫


1×
1
ev∗(1 . . . Bi(k,�)

∣
∣
∣ f
k, �

. . . 1)

+i ·
∫


1
ev∗(1 . . . Ai(k−1,�),i(k,�)

∣
∣
∣←→e
k, �

. . . 1) + i ·
∫


1
ev∗(1 . . . Ai(k,�),i(k,�−1)

∣
∣
∣� e
k, �

. . . 1)

)

+
∑

k,�

g−1
i(k,�),i(k−1,�),i(k−1,�−1)

∣
∣
∣ v
k, �

· gi(k,�),i(k,�−1),i(k−1,�−1)

∣
∣
∣ v
k, �

·dDR

(

gi(k,�),i(k−1,�),i(k−1,�−1)

∣
∣
∣ v
k, �

· g−1
i(k,�),i(k,�−1),i(k−1,�−1)

∣
∣
∣ v
k, �

)]

.

We will show that the term in the square bracket is equal to i · I t (H)|N (p,q,U). Inte-
gration along a fiber formula together with the relations of the connection of a gerbe
(Definition 4.5), give the following results:

dDR

∫


1×
1
ev∗(. . . Bi(k,�) . . . )

= (−1)2
∫


1×
1
dDR(ev

∗(. . . Bi(k,�) . . . ))− (−1)2
∫

∂(
1×
1)

ev∗(. . . Bi(k,�) . . . )

=
∫


1×
1
ev∗(. . . Hi(k,�) . . . )−

∫

∂(
1×
1)

ev∗(. . . Bi(k,�) . . . ),

where Hi(k,�) := H |Ui(k,�)
. Now, integrating over ∂(
1×
1)means that on the boundary

of the face f
k, � we integrate −Bi(k,�) with the following orientations:
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� e
k, �

��

←→e
k, ���

−Bi(k,�)

←→e
k + 1, �

��

� e
k, � + 1

��

Next, we have

dDR

∫


1
ev∗(. . . Ai1,i2 . . . )

= (−1)1
∫


1
dDR(ev

∗(. . . Ai1,i2) . . . )− (−1)1
∫

∂
1
ev∗(. . . Ai1,i2 . . . )

= −
∫


1
ev∗(. . . (Bi2 − Bi1) . . . ) + (Ai1,i2 |(endpt. v of 
1) − Ai1,i2 |(beginningpt. v of 
1)).

Thus, at the horizontal edge
←→e
k, �, we integrate

−Bi(k,�)+Bi(k−1,�) ��

which cancels with the terms from the integral over ∂(
1 × 
1), and similarly at the
vertical edge � e

k, �, we integrate

−Bi(k,�−1)+Bi(k,�)

��

which also cancels for the same reasons. Note that at the vertex v

k, �, we have the following
evaluations:

Ai(k−1,�),i(k−1,�−1)

��Ai(k−1,�−1),i(k,�−1) ��
−Ai(k−1,�),i(k,�) ��

−Ai(k,�),i(k,�−1)

��

Furthermore, these terms cancel with the application of dDR on the gi, j,k at the

vertex v

k, �,

g−1
i(k,�),i(k−1,�),i(k−1,�−1)

· gi(k,�),i(k,�−1),i(k−1,�−1)

·dDR

(
gi(k,�),i(k−1,�),i(k−1,�−1) · g−1

i(k,�),i(k,�−1),i(k−1,�−1)

)

= g−1
i(k,�),i(k−1,�),i(k−1,�−1)

· dDR
(
gi(k,�),i(k−1,�),i(k−1,�−1)

)

+gi(k,�),i(k,�−1),i(k−1,�−1) · dDR

(
g−1

i(k,�),i(k,�−1),i(k−1,�−1)

)
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= −i · (Ai(k,�),i(k−1,�) + Ai(k−1,�),i(k−1,�−1) + Ai(k−1,�−1),i(k,�)

)

+i · (Ai(k,�),i(k,�−1) + Ai(k,�−1),i(k−1,�−1) + Ai(k−1,�−1),i(k,�)

)

= i · (−Ai(k,�),i(k−1,�) − Ai(k−1,�),i(k−1,�−1) + Ai(k,�),i(k,�−1) + Ai(k,�−1),i(k−1,�−1)

)
.

Therefore, the only terms that are left over in the square bracket are

∑

k,�

i ·
∫


1×
1
ev∗(1 . . . Hi(k,�) . . . 1) = i · I t (p,q,U)(∑

k,�

(1 . . . Hi(k,�) . . . 1)
)

= i · I t (H)|N (p,q,U).

This is what we needed to show. ��
This completes the proof of (4.15) and with this the proof of the theorem. ��
Thus, we have constructed the higher holonomy forms hol2k,2�, which satisfy the

relations from Eq. (4.13). Using this Eq. (4.13), and a choice of numbers a, b ∈ R with
a + b = 1, we can now define the equivariant Chern character Ch(G, a, b) for the gerbe
G as

Ch(G, a, b) :=
∑

k≥0,�≥0

ak · b� · hol2k,2�.

To see where the equivariant Chern character lives, recall [AB, §5], and define

�(MT)inv(t+u) =
{

ω ∈ �(MT)

∣
∣
∣Lt+u(ω) = 0

}

the space of t+u invariant forms on�(MT)with the Witten differential DT = d +ιt +ιu.
In fact, for every a, b ∈ R with a + b = 1, we can do slightly better by considering the
following subcomplex �(MT)(a,b) of �(MT)inv(t+u). Define �(MT)(a,b) to be given
by the space

�(MT)(a,b) := �(MT)inv(t),inv(u),hor(−bt+au)

=
{
ω ∈ �(MT)

∣
∣
∣Lt(ω) = Lu(ω) = ι−bt+au(ω) = 0

}
.

�(MT)(a,b) has the same induced differential DT = d + ιt + ιu satisfying (DT)
2 = 0.

As a corollary, we have that Ch(G, a, b) is a closed element in this complex.

Corollary 4.18. For any a + b = 1 we have

Lt(Ch(G, a, b)) = Lu(Ch(G, a, b)) = ι−bt+au(Ch(G, a, b)) = 0,

and furthermore,

DT(Ch(G, a, b)) = 0.

Thus, Ch(G, a, b) is a closed element of �(MT)(a,b) ⊂ �(MT)inv(t+u).
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Proof. The first two statements follow from L = dι + ιd and Theorem 4.17. For the
horizontal statement, Theorem 4.17 gives that

−b · ιt(ak+1b�hol2k+2,2�) + a · ιu(akb�+1hol2k,2�+2) = 0.

Finally, to evaluate DT(Ch(G, a, b)), we calculate the akb� term of DT(Ch(G, a, b))
as

d
(

akb�hol2k,2�

)
+ ιt
(

a(k+1)b�hol2(k+1),2�

)
+ ιu

(
akb(�+1)hol2k,2(�+1)

)

(4.13)= (1− a − b) · akb� · d(hol2k,2�) = 0.

This completes the proof of the corollary. ��
Remark 4.19. As in the previous sections, we could as well define an equivariant Chern
character involving formal variables u and v of degree 2, by setting

Ch(u,v)(G, a, b) :=
∑

k≥0,�≥0

aku−k · b�v−� · hol2k,2�.

By the same reasons given in Corollary 4.18, we can check that Ch(u,v)(G, a, b) is a
closed element of the complex�(MT)[u, v; u−1, v−1]]inv(t),inv(u),hor(−b·u·t+a·v·u) with
differential d+u ·ιt +v·ιu. However, the following Proposition 4.20, which relates the var-
ious equivariant Chern characters for different a and b, will not hold for Ch(u,v)(G, a, b).
There are also similar consequences when relating the equivariant Chern characters for
the gerbe and its induced line bundle on L M which we will study in the next section, cf.
Remark 4.25 below.

We now show how the equivariant Chern characters Ch(G, a, b) for different a, b ∈ R

with a + b = 1 relate to each other. Denote by φa,b the matrix

φa,b =
[

a b
−1 1

]

∈ SL(2,R),

with inverse φ−1
a,b =

[
1 −b
1 a

]

. There is an induced map�a,b : MT→ MT by precom-

position. Note that under this map, we have the pushforwards, (�−1
a,b)∗(t) = t + u, and

(�−1
a,b)∗(u) = −bt+au. Using the standard fact (�a,b)

∗◦ιv = ι(�−1
a,b)∗(v)

◦(�a,b)
∗ for any

vector field v, we see that there is an induced map �T

a,b : �(MT)(1,0) → �(MT)(a,b).

We claim that the map �T

a,b relates the equivariant Chern characters Ch(G, 1, 0) and
Ch(G, a, b).

Proposition 4.20. For a, b ∈ R with a + b = 1, let φa,b =
[

a b
−1 1

]

∈ SL(2,R), and

denote by �a,b the induced map as above. Then,

(�a,b)
∗(Ch(G, 1, 0)) = Ch(G, a, b).
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Proof. Using the fact that (�−1
a,b)∗(u) = −bt + au, and Proposition 4.15, we calculate

(�a,b)
∗(hol2k,0) = (�a,b)

∗
(

i k

k!
(∫

T

ιu Hdtdu

)∧k

· hol0,0

)

= i k

k!
(∫

T

ι
(�−1

a,b)∗(u)
Hdtdu

)∧k

·(�a,b)
∗(hol0,0)= i k

k!
(∫

T

ι−bt+au Hdtdu

)∧k

·hol0,0

= i k

k!
(

−b
∫

T

ιt Hdtdu + a
∫

T

ιu Hdtdu

)∧k

· hol0,0

=
∑

r+s=k

(−1)s

r !s! ir+s · bs
(∫

T

ιt Hdtdu

)∧s

· ar
(∫

T

ιu Hdtdu

)∧r

· hol0,0

=
∑

r+s=k

ar bshol2r,2s .

Summing this equality over all k ≥ 0 gives the claimed result. ��

4.4. Compatibility check. In this subsection we first recall the well known fact that a
gerbe on M with connection induces a line bundle on L M with connection. We then
show, for a given gerbe with connection, how the equivariantly closed extensions of
2-holonomy to MT, are related to the equivariant Chern character of L(L M), given
by applying the construction of the previous section to the associated line bundle with
connection on L M .

Let C = {U1, . . . ,Un} be a covering of M , and let (gi jk, Ai j , Bi ) be the datum of
an abelian gerbe with connection G on M . Recall from Definition 4.5, that this means
gi, j,k ∈ �0(Ui, j,k,U (1)), Ai, j ∈ �1(Ui, j ,R), and Bi ∈ �2(Ui ,R) are symmetric in
their indices

Ai, j = −A j,i , and gi, j,k = g−1
j,i,k = g j,k,i

and

g j,k,l g
−1
i,k,l gi, j,l g

−1
i, j,k = 1 on Ui, j,k,l ,

A j,k − Ai,k + Ai, j = i · g−1
i, j,kdgi, j,k on Ui, j,k,

B j − Bi = d Ai, j on Ui, j .

As before, we denote the 3-curvature by H , where H |Ui = d Bi . We now construct a line

bundle with connection on L M . As before, we denote by I s
q the interval I s

q =
[

s−1
q , s

q

]

for 1 ≤ s ≤ q.

Definition 4.21. First, we define a covering C of L M from the covering C of M. Let

C = {U (i1, . . . , iq) : q ≥ 1, and Ui j ∈ C for all j = 1, . . . , q},
where U (i1, . . . , iq) = {γ ∈ L M : γ |I s

q
⊂ Uis for 1 ≤ s ≤ q}.

By compactness and the Lebesgue lemma, C is a covering of L M.
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First, we define a local 1-form Âî on L M for a multi-index î = (i1, . . . , iq). On the

open set Uî = U (i1, . . . , iq), we set evs
q : L M → M, γ �→ γ

(
s−1

q

)
, and define

Âî =
q∑

s=1

−i ·
(∫

I s
q

ιu Bis du + (evs
q)
∗Ais−1,is

)

.

Let Uî = U (i1, . . . , iq) ∈ C and U ĵ = U ( j1, . . . , jq ′) ∈ C. Without loss of gen-
erality, we may assume that q = q ′, (since we may take q ′′ = lcm(q, q ′), and write
U (i1, . . . , iq) = U (k1, . . . , kq ′′) and U ( j1, . . . , jq ′) = U (�1, . . . , �q ′′), where the kr
are given by the is repeated q ′′/q times, and the �r by the js repeated q ′′/q ′ times). For
γ ∈ Uî∩U ĵ and 1 ≤ s ≤ q, we have thatγ |I s

q
⊂ Uis∩U js . Define ĝî, ĵ : Uî∩U ĵ → U (1)

by

ĝî, ĵ (γ )=
q∏

s=1

(

e
−i ·∫I s

q
ιu A js ,is du ·g−1

is , js , js−1

(

γ

(
s − 1

q

))

· gis ,is−1, js−1

(

γ

(
s − 1

q

)))

,

where we have set i0 = i p and j0 = jp to unify notation.

Lemma 4.22. Using the notation from the last definition, the ĝî, ĵ and Âî define a line
bundle with connection on L M. That is they satisfy the relations

ĝî, ĵ = ĝ−1
ĵ,î

on Uî, ĵ ,

ĝî, ĵ ĝ ĵ,k̂ = ĝî,k̂ on Uî, ĵ,k̂,

Â ĵ − Âî = ĝ−1
î, ĵ
· d(ĝî, ĵ ) on Uî, ĵ ,

d Âî = d Â ĵ on Uî, ĵ .

The curvature R̂, which is locally given by R̂|Uî
= d Âî , can be written as

R̂ = i ·
∫

I
ιu Hdu.

Proof. We will keep using the notation from Definition 4.21. Since Ais , js = −A js ,is

and g−1
is , js , js−1

· gis ,is−1, js−1 = g js ,is ,is−1 · g−1
js , js−1,is−1

, we have ĝî, ĵ = ĝ−1
ĵ,î

. If we have

another open set Uk̂ = U (k1, . . . , kq) ∈ C with γ ∈ Uî ∩U ĵ ∩Uk̂ , then ĝî, ĵ ĝ ĵ,k̂ = ĝî,k̂
since for all 1 ≤ s ≤ q,

e
−i
∫

I s
q
ιu A js ,is dt · e−i

∫
I s
q
ιu Aks , js du

= e
−i
∫

I s
q
ιu(A js ,is +Aks , js )du

= e
∫

I s
q
ιu(−i ·Aks ,is−d log gis , js ,ks )du

= gis , js ,ks

(

γ

(
s − 1

q

))

e
−i
∫

I s
q
ιu Aks ,is du

g−1
is , js ,ks

(

γ

(
s

q

))

,

and, at γ ((s − 1)/q) we obtain,

(g−1
is , js , js−1

· gis ,is−1, js−1) · (g−1
js ,ks ,ks−1

· g js , js−1,ks−1) · g−1
is−1, js−1,ks−1

· gis , js ,ks

= g−1
is ,ks ,ks−1

· gis ,is−1,ks−1 .
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Now, on Uî ∩U ĵ as above, we have Â j − Âi = d log ĝî, ĵ , since

q∑

s=1

−i
∫

I s
q

ιu(B js − Bis )du =
q∑

s=1

−i
∫

I s
q

ιud Ais , js du,

−i
q∑

s=1

(evs
q )
∗A js−1, js + i

q∑

s=1

(evs
q )
∗Ais−1,is =

q∑

s=1

−i
(
(evs

q )
∗A js−1, js − (evs

q )
∗Ais−1,is

)
,

d log

( q∏

s=1

e
−i
∫

I s
q
ιu A js ,is du

)

= d
q∑

s=1

−i
∫

I s
q

ιu A js ,is du,

d log

( q∏

s=1

(evs
q )
∗g−1

is , js , js−1

)

=
q∑

s=1

−i
(
(evs

q )
∗A js−1, js − (evs

q )
∗A js−1,is + (evs

q )
∗A js ,is

)
,

d log

( q∏

s=1

(evs
q )
∗gis ,is−1, js−1

)

=
q∑

s=1

−i
(
−(evs

q )
∗A js−1,is−1 +(evs

q )
∗A js−1,is−(evs

q )
∗Ais−1,is

)
.

We see that the claim follows, once we remark that the integration along the fiber formula
implies that

d
( ∫

I s
q

ιu A js ,is du
)
= −

∫

I s
q

ιud A js ,is du + (evs+1
q )∗A js ,is − (evs

q)
∗A js ,is .

Finally, on Uî , we have

R̂|Uî
= d Âi =

q∑

s=1

−i ·
(

d
∫

I s
q

ιu Bis du + (evs
q)
∗d Ais−1,is

)

=
q∑

s=1

−i ·
(

−
∫

I s
q

ιud Bis du + (evs+1
q )∗Bis − (evs

q)
∗Bis + (evs

q)
∗ (Bis − Bis−1

)
)

= i ·
∫

I
ιu Hdu,

so that the d Âî also coincide on intersecting open sets. ��
The following theorem gives a relation between the (higher) holonomies of the gerbe

and the line bundle on L M defined above.

Theorem 4.23. Let G = (gi jk, Ai j , Bi , H) be an abelian gerbe with connection on M,
and let E = (ĝi j , Â, R̂) be the induced line bundle on L M as in Defintion 4.21 and
Lemma 4.22 above. Denote by � : L(L M) → MT the adjoint mapping �(γ )(t, u) =
γ (t)(u). Then, for all k ≥ 0, we have that

hol E
2k = �∗(holG2k,0),

where hol E
2k is the bundle higher holonomy from Definition 3.9, and holG2k,0 is the gerbe

higher holonomy from Definition 4.14.
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Proof. Let γ : S1 → L M be a loop in L M such that for each 1 ≤ r ≤ p, γ |I r
p
⊂

Uîr
= U

(
i(r,1), . . . , i(r,qr )

) ⊂ L M . We will calculate the hol2k , and since these are
well defined global forms, we can assume that q1 = · · · = qp = q, for otherwise we
can repeat open sets as before. So we have �(γ )|I r

p×I s
q
⊂ Ui(r,s) for all 1 ≤ r ≤ p and

1 ≤ s ≤ q.
We first calculate hol E

0 . From Remark 3.11, we know that hol E
0 applied to γ can be

written as

hol E
0 (γ ) =

p∏

r=1

ĝîr−1,îr

(

γ

(
r − 1

p

))

· e
∫

I r
p
ιt Âîr

dt
.

Now, we have

ĝîr−1,îr

(

γ

(
r − 1

p

))

=
q∏

s=1

(

exp

(

(−i) ·
∫

I s
q

ιu Ai(r,s),i(r−1,s)

(
r − 1

p
, u

)

du

)

·g−1
i(r−1,s),i(r,s),i(r,s−1)

· gi(r−1,s),i(r−1,s−1),i(r,s−1)

(

γ

(
r − 1

p
,

s − 1

q

)))

and

Âîr
=

q∑

s=1

−i ·
(∫

I s
q

ιu Bi(r,s)du + (evs
q)
∗Ai(r,s−1),i(r,s)

)

.

Substituting for Âîr
we have

exp

(∫

I r
p

ιt

q∑

s=1

(−i) ·
(∫

I s
q

ιu Bi(r,s)du + (evs
q)
∗Ai(r,s−1),i(r,s)

)

dt

)

= exp

( q∑

s=1

(−i) ·
(∫

I r
p×I s

q

ιtιu Bi(r,s)dtdu +
∫

I r
p

ιt Ai(r,s−1),i(r,s)

(

t,
s − 1

q

)

dt

))

.

Now, taking the product over r = 1, . . . , p, and using the fact that

g−1
i(r−1,s),i(r,s),i(r,s−1)

· gi(r−1,s),i(r−1,s−1),i(r,s−1)

= gi(r,s),i(r−1,s),i(r−1,s−1) · g−1
i(r,s),i(r,s−1),i(r−1,s−1)

,

we get that

hol E
0 (γ ) =

p∏

r=1

q∏

s=1

exp

(

i ·
∫

I r
p×I s

q

ιuιt Bi(r,s)dtdu + i ·
∫

I r
p×{ s−1

q }
ιt Ai(r,s),i(r,s−1)dt

+i ·
∫

{ r−1
p }×I s

q

ιu Ai(r−1,s),i(r,s)du

)

· gi(r,s),i(r−1,s),i(r−1,s−1) · g−1
i(r,s),i(r,s−1),i(r−1,s−1)

.

Comparing this to Eq. (4.6) for the choices made in Proposition 4.11, we see that this is
equal to holG0,0(�(γ )) = �∗(holG0,0)(γ ).
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Now, again from Remark 3.11, we write hol E
2k explicitly for the line bundle with

connection on L M as follows:

hol E
2k =

(∫


k
R̂(t1) . . . R̂(tk)dt1 . . . dtk

)

∧ hol E
0

= 1

k!
(∫

I
R̂(t)dt

)∧k

∧ hol E
0 =

i k

k!
(∫

I×I
ιu H(t, u)dtdu

)∧k

∧ �∗(holG0,0),

where we have used Lemma 4.22 in the last step. Now, from the explicit formula for the
higher gerbe holonomy given in Eq. (4.7) in Proposition 4.15, we see that the last term
equals �∗(holG2k,0). ��

We have seen that the equivariant Chern characters live in the spaces Ch(E, Â) ∈
�(L(L M))inv(t) and Ch(G, 1, 0) ∈ �(MT)(1,0) = �(MT)inv(t),inv(u),hor(u), and both
spaces have a differential given by D = d + ιt, since ιu = 0 on �(MT)(1,0). Since �
maps � : L(L M)→ MT, we obtain an induced chain map

�∗ : �(MT)inv(t),inv(u),hor(u)→ �(L(L M))inv(t)

mapping the equivariant Chern characters to each other by the previous theorem. Fur-
thermore, we have the following

Corollary 4.24. Let G be an abelian gerbe with connection, and let Ch(G, 1, 0) ∈
�(MT)(1,0) be the equivariantly closed extension of 2-holonomy, using a = 1 and
b = 0 in Corollary 4.18. Let Ch(E, Â) ∈ �(L(L M))inv(t) be the equivariant Chern
character on L(L M) of the line bundle E on L M with connection Â associated to G.
Then,

(�−1
a,b ◦ �)∗(Ch(G, a, b)) = Ch(E; Â).

Proof. From Proposition 4.20, we know (�−1
a,b)
∗(Ch(G, a, b)) = Ch(G, 1, 0), and using

Theorem 4.23, we have

�∗(Ch(G, 1, 0)) =
∑

k≥0

�∗(holG2k,0) =
∑

k≥0

hol E
2k = Ch(E; Â).

This completes the proof of the corollary. ��
Remark 4.25. We remark again that Corollary 4.24 does not hold for Ch(u,v)(G, a, b).
What is still true by Theorem 4.23 is that the chain map

�∗ ⊗ (v �→ 1) : (�(MT)[u, v; u−1, v−1]]inv(t),inv(u),hor(u), d + u · ιt)
−→ (�(L(L M))[u, u−1]]inv(t), d + u · ιt)

maps Ch(u,v)(G, 1, 0) to Ch(u)(E; Â). However, the equivariant Chern characters
Ch(u,v)(G, a, b) can not be related this way, since Proposition 4.20 fails in this case,
cf. Remark 4.19.
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5. 2-Holonomy Along a Surface

In this section, we define the 2-holonomy of an abelian gerbe with connection along a
closed surface � in terms of a iterated integral construction similar to the one in the
previous section. We will show that this coincides with the usual 2-holonomy function
defined in the literature, see Proposition 5.10.

5.1. Simplicial sets and the local Hochschild complex. We now define the notions of
simplicial sets, Hochschild complex subject to a local data, and its iterated integral map,
which will be needed in the following subsection to obtain the holonomy along any
closed surface of an abelian gerbe.

Definition 5.1. 
 denotes the category whose objects are the ordered sets [k] =
{0, 1, . . . , k}, and morphisms f : [k] → [�] are non-decreasing maps f (i) ≥ f ( j)
for i > j . A finite simplicial set X• is a contravariant functor from
 to the category of
finite sets Sets, or written as a formula, X• : 
op → Sets. Denote by Xk = X•([k]),
and call its elements x ∈ Xk the k-simplices of X•. The morphisms of 
 under the
functor X• are represented by face maps di : Xk → Xk−1, for i = 0, . . . , k, and by
degeneracies si : Xk → Xk+1, for i = 0, . . . , k, satisfying the relations

di ◦ d j = d j−1 ◦ di , for i < j

si ◦ s j = s j+1 ◦ si , for i ≤ j

di ◦ s j =
⎧
⎨

⎩

s j−1 ◦ di , for i < j
id, for i = j, or i = j + 1
s j ◦ di−1, for i > j + 1

.

A k-simplex x ∈ Xk is called degenerate, if it is in the image under some degeneracy si ,
in other words x = si (y) for some y ∈ Xk−1 and some si . If x is not degenerate, then x
is called non-degenerate.

The geomertic realization of X• is denoted by X = |X•| = (∐k Xk×
k)/ ∼, where

k is the standard k-simplex. For more details, see [GJ,Ma].

For later use, we record the following lemma which shows that every simplex has
support on a unique non-degenerate simplex.

Lemma 5.2. For each x ∈ Xk, there exists a unique non-degenerate x̄ ∈ X j , where
j ≤ k, such that x = si1 ◦ · · · ◦ sik− j (x̄).

Proof. We first prove the existence. When x itself is non-degenerate, then we can set
x̄ = x . If x is degenerate, then x = si1(x1) for some x1 ∈ Xk−1. If x1 is non-degenerate,
then we may take x̄ = x1, or otherwise x1 = si2(x2) for some x2. In this way we arrive
at some x = s1 ◦ · · · ◦ sk−p(xk−p), which must terminate with some non-degenerate
element that we denote by x̄ = xk−p.

Now for the uniqueness, assume that x = si1 ◦ · · · ◦ sik−p (x̄) = s j1 ◦ · · · ◦ s jk−q (ȳ)
with non-degenerate x̄ and ȳ. We need to show that x̄ = ȳ. Without loss of generality,
we may assume that p ≤ q. The simplicial relations imply that for each degeneracy sir
there is a face map di ′r such that di ′r sir = id. Then x̄ = di ′k−p

. . . di ′1 si1 . . . sik−p (x̄) =
di ′k−p

. . . di ′1 s j1 . . . s jk−q (ȳ). We now use the simplicial relations to move all the di ′ ’s to
the right of the s j ’s, noting that either a face map dk appears to the right of s j , or they
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combine to the identity. When q > p we see that there are more degeneracies than face
maps, so that not all s j ’s can be composed to an identity, and thus x̄ can be written as
x̄ = s j ′ . . . (ȳ), which contradicts the assumption that x̄ is non-degenerate. Similarly, if
p = q but not all s j ’s are composed to an identity, we get that x̄ = s j ′ . . . (ȳ) for some
s j ′ with the same contradiction as before. Thus, the only possible case is when p = q,
and each di ′ composes with some s j to the identity, showing that x̄ = id(ȳ) = ȳ. This
is precisely what we needed to show. ��

We now define the Hochschild complex, shuffle product, and iterated integral subject
to local data on a manifold M .

Let �• be a 2-dimensional set, i.e. the non-degenerate simplices are only in �0, �1
and �2. We use the notation v ∈ �0 for a non-degenerate vertex, e ∈ �1 for a non-
degenerate edge, and f ∈ �2 for a non-degenerate face in �•. For a vertex v, we will
often consider inclusions v ⊂ e ⊂ f of a vertex v included in an edge e, included in a
face f , all of which are non-degenerate. Here an inclusion v ⊂ e means that v = di (e)
for some i = 0, 1, and similarly e ⊂ f means that e = di ( f ) for some i = 0, 1, 2.

For the next three definitions, we fix the following local data, starting from an open
cover {Ui }i of M . To each non-degenerate vertex v of �•, we choose an open set Uiv of
M , similarly, for each non-degenerate edge e, we choose an open set Uie , and for each
non-degenerate face f , we choose an open set Ui f . We denote this choice of open sets
by U = {Uiv }v ∪ {Uie }e ∪ {Ui f } f . We will be interested in providing an iterated integral
map for the open subset N (�•,U) of M� , which is defined as,

N (�•,U) := {σ ∈ M� : σ |v ⊂ Uiv , σ |e ⊂ Uie , σ | f ⊂ Ui f ,∀ non-deg. v, e, f }.

(Here, for σ ∈ M� and a simplex s ∈ ��, σ |s denotes the restriction of σ :(
(
∐

k �k ×
k)/ ∼)→ M to {s} ×
�.)
For a choice of local data U , we will define the Hochschild complex associated to U .

Definition 5.3. We write�(Uiv ),�(Uie ),�(Ui f ) for the DeRham algebras on the open
sets Uiv ,Uie ,Ui f , respectively. For non-degenerate simplices v, e, and f , define

⎧
⎪⎪⎨

⎪⎪⎩

A( f ) = �(Ui f ),

A(e) =⊗e⊂ f �(Uie ∩Ui f ),

where the tensor product is over �(Uie ),

A(v) =⊗v⊂e⊂ f �(Uiv ∩Uie ∩Ui f )/ ∼,
(5.1)

where for the last algebra A(v), we take a tensor product over all non-degenerate edges
e, and faces f , with v ⊂ e ⊂ f . The relation ∼ identifies tensors over common edges
and faces. More precisely, for α = ⊗ a(v,e, f ) ∈ ⊗v⊂e⊂ f �(Uiv ∩ Uie ∩ Ui f ) and
common edges v ⊂ e ⊂ f1 and v ⊂ e ⊂ f2, we identify

(
b · a(v,e, f1) ⊗ a(v,e, f2) ⊗ . . .

) ∼ (a(v,e, f1) ⊗ b · a(v,e, f2) ⊗ . . .
)
, ∀b ∈ �(Uiv ∩Uie ),

and for common faces v ⊂ e1 ⊂ f and v ⊂ e2 ⊂ f , we identify

(
c · a(v,e1, f ) ⊗ a(v,e2, f ) ⊗ . . .

)∼(a(v,e1, f ) ⊗ c · a(v,e2, f ) ⊗ . . .
)
, ∀c ∈ �(Uiv ∩Ui f ).
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Note that for e ⊂ f, A(e) is a module over A( f ), coming from the inclusion Uie ∩
Ui f ⊂ Uie . Also, for v ⊂ e, A(v) is a module over A(e), since with v ⊂ e ⊂ f1/2 the
map

�(Uie ∩Ui f1
)⊗�(Uie ∩Ui f2

)→ �(Uiv ∩Uie ∩Ui f1
)⊗�(Uiv ∩Uie ∩Ui f2

)

→ �(Uiv ∩Uie ∩Ui f1
)⊗�(Uiv∩Uie )

�(Uiv ∩Uie ∩Ui f2
)

factors through �(Uie ∩Ui f1
)⊗�(Uie )

�(Uie ∩Ui f2
).

Next, we define a Hochschild-type space C H (�•,U)• subject to the local data U and
its shuffle product, as in Sects. 3 and 4. These are essentially the higher Hochschild
complex and shuffle product as defined in [GTZ, Definitions 2.1.2 and 2.4.1].

Definition 5.4. Let �• be a simplicial set, and let U = {Uiv }v ∪ {Uie }e ∪ {Ui f } f be a
choice of local data as before. Define the Hochschild complex with respect to �• and U
to be

C H (�•,U)• =
⊕

k≥0

⎛

⎝
⊗

x∈�k

A(x̄)

⎞

⎠ [k],

where, for any (possibly degenerate) k-simplex x ∈ �k, x̄ is the unique non-degenerate
simplex associated to x from Lemma 5.2, A(x̄) is the algebra defined in Eq. (5.1) above,
and [k] denotes a degree shift by k as in Definition 4.1. The tensor product over �k is
defined as in Sect. 4.1, namely as a coequalizer over all possible linear orderings of the
set �k . For an element a =⊗x∈�k

αx ∈ C H (�•,U)• , we call k the simplicial degree of
a, and we write |a| =∑x |αx | − k for the total degree of a.

The differential on C H (�•,U)• is defined similar to the differential in Definition 3.1.
That is, if di : �k → �k−1 denotes an i th boundary of the simplicial set�•, the simplicial
relations show that either di (x) = x̄ , or di (x) = di (x̄). In either case, di induces a map

dA
i : A(x̄)→ A

(
di (x)

)
, dA

i (α) = α.1, where 1 ∈ A
(

di (x)
)

. The map dA
i is either the

identity or comes from the fact that A(di (x̄)) is a module over A(x̄), as described in Defi-
nition 5.3. We therefore obtain an induced map (di )� :⊗x∈�k

A(x̄)→⊗
y∈�k−1

A ( y ),

(di )� :
⊗

x∈�k

αx �→
⊗

y∈�k−1

1A(ȳ) ·
⎛

⎝
∏

x∈�k ,di (x)=y

dA
i (αx )

⎞

⎠ ,

where the expression in the parenthesis is a product in A(ȳ). With this notation, the
differential D applied to an element a =⊗x∈�k

αx ∈ C H (�•,U)• of simplicial degree k
is given by a sum of the DeRham differential and the simplicial face maps (di )�,

D

⎛

⎝
⊗

x∈�k

αx

⎞

⎠ := (−1)kdDR

⎛

⎝
⊗

x∈�k

αx

⎞

⎠ + (−1)k+1
k∑

i=0

(−1)i+1(di )�

⎛

⎝
⊗

x∈�k

αx

⎞

⎠ .

(5.2)

It is D2 = 0, since d2
DR = 0, and d ′ := ∑k

i=0(−1)i+1(di )� satisfies (d ′)2 = 0 (which
can be seen from the simplicial relations of the maps di ) and dDR ◦ d ′ = d ′ ◦ dDR . The
homology of this complex is denoted by H H (�•,U)• := H•(C H (�•,U)• , D).
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For the shuffle product • on C H (�•,U)• , we consider a degeneracy si : �k → �k+1.
It is always si (x) = x̄ , so that we get the induced maps (si )� : ⊗x∈�k

A(x̄) →⊗
y∈�k+1

A ( y ),

(si )� :
⊗

x∈�k

αx �→
⊗

y∈�k+1

1A(ȳ) ·
⎛

⎝
∏

x∈�k ,si (x)=y

αx

⎞

⎠ . (5.3)

If we denote by � :
(⊗

x∈�k
A(x̄)

)⊗2 → ⊗
x∈�k

A(x̄) the product
(⊗

x∈�k
αx

)
�

(⊗
x∈�k

βx

)
=⊗x∈�k

(αx · βx ), then we can define the shuffle product • as the prod-

uct generated by

( ⊗

x∈�k

A(x̄)
)
⊗
( ⊗

x∈��
A(x̄)

)
→
( ⊗

x∈�k+�

A(x̄)
)
⊗
( ⊗

x∈�k+�

A(x̄)
)

�→
⊗

x∈�k+�

A(x̄)

a • b :=
∑

σ∈S(k,�)

(−1)|a|·� · sgn(σ )·

· ((sσ(k+�))� ◦ · · · ◦ (sσ(k+1))�(a)
)
�
(
(sσ(k))� ◦ · · · ◦ (sσ(1))�(b)

)
.

Here, the sum is over all shuffles σ ∈ S(k, �).
We also have an iterated integral map I t (�•,U) : C H (�•,U)• → �(N (�•,U)), where

the image of this map is the De Rham forms on N (�•,U) ⊂ M� defined via its Fréchet
manifold structure (see [H, I.4.1.3]). Using this notion of forms, we are now ready to
define the iterated integral map analogous to Definition 4.3 in Sect. 4.1.

Definition 5.5. The iterated integral map I t (�•,U) : C H (�•,U)• → �(N (�•,U)) is
given by pulling back and integrating along the fiber of the maps defined below. First,
there is an evaluation map ev : M� ×
�→ M�� = Map(��,M), given by

ev

(

σ :
(
(∐

k

�k ×
k)/ ∼
)

→ M, 0 ≤ t1 ≤ · · · ≤ t� ≤ 1

)

(x ∈ ��)

:= σ
([

x, 0 ≤ t1 ≤ · · · ≤ t� ≤ 1
])
.

Now, for an element x ∈ ��, we consider x̄ from Lemma 5.2, which is the non-degen-
erate simplex that supports x. Denote by Wx the set consisting of x̄ together with all
non-degenerate simplices, in which x̄ is included as a face, or face of a face,

x̄ = f ∈ �2 ⇒ Wx = { f },
x̄ = e ∈ �1 ⇒ Wx = {e} ∪ { f : e ⊂ f },
x̄ = v ∈ �0 ⇒ Wx = {v} ∪ {e : v ⊂ e} ∪ { f : v ⊂ f }.

Claim. We claim that when starting with an element σ ∈ N (�•,U), the evaluation map
lands in the combined intersection ev(σ, t1 ≤ · · · ≤ t�)(x) ∈⋂y∈Wx

Uiy .
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Proof. To see this claim, first note that for x = si (y), it is ev(σ, t1 ≤ · · · ≤ t�)(si (y)) =
σ
([y, t1 ≤ · · · ≤ t̂i ≤ · · · ≤ t�]

)
, so that when x = si1 ◦ · · · ◦ sir (x̄), we have (for some

j1, . . . , jr )

ev(σ, t1 ≤ · · · ≤ t�)(x) = σ
([x̄, t1 ≤ · · · ≤ t̂ j1 ≤ · · · ≤ t̂ jr ≤ · · · ≤ t�]

) ∈ Uix̄ .

Similarly, when x̄ = di (y) then ev(σ, t1 ≤ · · · ≤ tk)(di (y)) = σ
([y, t1 ≤ · · · ≤ ti ≤

ti ≤ · · · ≤ tk]
)
, so that for non-degenerate y, this also lands in Uiy . A similar argument

works for x̄ = di (d j (z)). ��

Thus, we have the map ev : N (�•,U)×
�→∏
x∈��

(⋂
y∈Wx

Uiy

)
⊂ M�� .

On the other hand, we also have an induced map ψx : A(x̄) → �(
⋂

y∈Wx
Uiy ).

For non-degenerate faces x̄ = f this is the identity id : A( f ) = �(Ui f ), for non-
degenerate edges x̄ = e the projections �(Uie ∩ Ui f ) → �(Uie ∩

⋂
e⊂ f Ui f ) for

all (e ⊂ f ) factor through tensoring over �(Uie ), and for vertices x̄ = v the maps
�(Uiv ∩ Uie ∩ Ui f ) → �(Uiv ∩

⋂
v⊂e Uie ∩

⋂
v⊂ f Ui f ) for all (v ⊂ e ⊂ f ) factor

simultaneously through �(Uiv ∩Uie ) and �(Uiv ∩Ui f ).

For an element a ∈ C H (�•,U)• = ⊕
�≥0

(⊗
x∈�� A(x̄)

)
that is in the simplicial

degree-� component, the iterated integral I t (�•,U)(a) ∈ �(N (�•,U)) is given by using
the maps ψx together with the diagram

N (�•,U)×
�
∫

�

��

ev �� ∏
x∈��

(⋂
y∈Wx

Uiy

)
⊂ M��

N (�•,U)

More precisely, we can define the iterated integral on the degree-� component⊗
x∈�� A(x̄) as the composition

I t (�•,U) :
⊗

x∈��
A(x̄)

⊗xψx−→
⊗

x∈��
�

⎛

⎝
⋂

y∈Wx

Uiy

⎞

⎠ −→ �

⎛

⎝
∏

x∈��

⋂

y∈Wx

Uiy

⎞

⎠

ev∗−→ �(N (�•,U)×
�)
∫

�−→ �(N (�•,U)).

In short, for an element a ∈ C H (�•,U)• in simplicial degree �, we can simply write,

I t (�•,U)(a) =
∫


�
ev∗(⊗xψx (a)) ∈ �(N (�•,U)). (5.4)

One of the main properties of the iterated integral is that it respects both the differ-
entials and the products, just as in Proposition 4.4.

Proposition 5.6. I t (�•,U) commutes with differentials and products,

I t (�•,U)(D(a)) = dDR(I t (�•,U)(a)), and I t (�•,U)(a • b) = I t (�•,U)(a) ∧ I t (�•,U)(b).
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Proof. The proof is similar to [GTZ, Lem. 2.2.2, Prop. 2.4.6] and Proposition 4.4, (see
also Propositions 3.6). We start with the differentials. We calculate dDR(I t (�•,U)(a)) as
follows,

dDR

(
I t (�•,U)(a)

)
= dDR

(∫


�
ev∗(⊗xψx (a))

)

= (−1)� ·
(∫


�
dDR(ev

∗(⊗xψx (a)))−
∫

∂
�
ev∗(⊗xψx (a))

)

.

Since d commutes with ev∗ and is a graded derivation under the tensor product of
maps ⊗xψx , we see that the first term is exactly (−1)� · ∫


�
ev∗(dDR(⊗xψx (a))) =∫


�
ev∗(⊗xψx d̃(a)) = I t (�•,U)

(
d̃a
)
, where d̃ is the first term on the right hand side of

(5.2). For the second term that is being integrated over ∂
�, we use that the boundary

∂
� =
�⋃

i=0

∂i

� =

�⋃

i=0

{0 = t0 ≤ t1 ≤ · · · ≤ ti = ti+1 ≤ · · · ≤ t� ≤ t�+1 = 1}.

Since 
�−1 → ∂i

� is orientation preserving exactly when i is odd, we obtain∑�

i=0(−1)�+1+i+1·∫

�−1 ev∗(⊗xψx (di )�(a)) = I t (�•,U)

(
(−1)�+1∑�

i=0(−1)i+1(di )�a
)
,

where (di )� multiplies the terms as in the second term on the right hand side of Eq. (5.2).
This shows that we get exactly I t (�•,U)

(
D(a)

)
, proving that the iterated integral is a

chain map.
Next, we consider the shuffle and wedge products. First we rewrite the wedge product

of two iterated integrals,

I t (�•,U)(a) ∧ I t (�•,U)(b)

=
∫


k
ev∗(⊗x∈�kψxa) ∧

∫


�
ev∗(⊗x∈��ψxb)

= (−1)|a|·�
∫


k×
�
(ev, ev)∗(⊗x∈�kψxa ∧⊗x∈��ψxb)

= (−1)|a|·�
∑

σ∈S(k,�)

∫

βσ (
k+�)

(ev, ev)∗(⊗x∈�kψxa ∧⊗x∈��ψxb),

where for a (k, �)-shuffle σ ∈ S(k, �), the map βσ : 
k+� → 
k × 
�, (t1 ≤ · · · ≤
tk+�) �→ (tσ(1) ≤ · · · ≤ tσ(k), tσ(k+1) ≤ · · · ≤ tσ(k+�)) is used to decompose
k ×
� =⋃
σ∈S(k,�) β

σ (
k+�). Now, we have a commutative diagram,

N (�•,U)×
k+�
id×βσ ��

ev

��

N (�•,U)×
k ×
�
(ev,ev)

��
M�k+�

diag �� M�k+� × M�k+�
η′σ×η′′σ �� M�k × M��

Here, diag is the diagonal on M�k+� , η′σ : M�k+� → M�k is given by η′σ = Msσ(k+1) ◦
· · · ◦ Msσ(k+�) , and similarly η′′σ : M�k+� → M�� is η′′σ = Msσ(1) ◦ · · · ◦ Msσ(k) , and we
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can check that the diagram commutes, since for x ∈ �k, y ∈ ��, we have

(ev, ev) ◦ (id × βσ )(γ, t1 ≤ · · · ≤ tk+�)(x, y)

=
(
γ [x, tσ(1) ≤ · · · ≤ tσ(k)], γ [y, tσ(k+1) ≤ · · · ≤ tσ(k+�)]

)

=
(
γ [sσ(k+�) ◦ · · · ◦ sσ(k+1)(x), t1 ≤ · · · ≤ tk+�],
γ [sσ(k) ◦ · · · ◦ sσ(1)(y), t1 ≤ · · · ≤ tk+�]

)

= (η′σ × η′′σ ) ◦ diag ◦ ev(γ, t1 ≤ · · · ≤ tk+�)(x, y).

(Note also that in the above diagram, the evaluation maps really land in the correspond-

ing subsets
∏

x∈�k

(⋂
y∈Wx

Uiy

)
⊂ M�k , etc., as described in Definition 5.5, which we

have suppressed for better readability.) Thus, we see that I t (�•,U)(a) ∧ I t (�•,U)(b) is
equal to

∑

σ∈S(k,�)

(−1)|a|·�sgn(σ ) ·
∫


k+�
ev∗ ◦ diag∗((η′σ )∗(⊗xψxa) ∧ (η′′σ )∗(⊗xψxb)).

Now, the η′σ and η′′σ add degeneracies to the a and b which, together with diag, becomes
the shuffle product, since we have the commutative diagram

⊗
x∈�k

A(x̄)
(si )� ��

⊗x∈�kψx

��

⊗
x∈�k+1

A(x̄)

⊗x∈�k+1ψx

��

�
(∏

x∈�k

⋂
y∈Wx

Uiy

)
(Msi |···)∗ �� �

(∏
x∈�k+1

⋂
y∈Wx

Uiy

)

and the fact that diag acts as the �-product in Definition 5.4, diag∗ ◦ ((⊗xψx ) ⊗
(⊗xψx )) = (⊗xψx ) ◦ �. We thus see that the above equation becomes,

I t (�•,U)(a) ∧ I t (�•,U)(b) =
∫


k+�
ev∗(⊗x∈�k+�ψx (a • b)) = I t (�•,U)(a • b).

This completes the proof the lemma. ��
In the case where all open setsUi are chosen to beUi = M , we see thatN (�•, {M}) =

M� . If we furthermore assume that M is 2-connected, then the iterated integral map
is a quasi-isomorphism I t (�•,{M}) : C H (�•,{M})• → �(N (�•, {M})) = �(M�), see
[GTZ, Prop. 2.5.3].

5.2. 2-Holonomy along a surface. Using the local data of an abelian gerbe with con-
nection from Definition 4.5, we now define a natural element in a surface-Hochschild
complex C H (�•,U) associated to the local data U .

In this section, we assume that �• is a regular simplicial decomposition of a closed
surface �. More precisely, we assume that the geometric realization |�•| = �, and �•
is a regular simplicial set according to the following definition.
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Definition 5.7. Let �• be a 2-dimensional simplicial set, i.e. the only non-degenerate
simplices are in�i for i = 0, 1, 2. Then�• is called regular, if every edge e is included
in exactly two faces, e ⊂ f ′e and e ⊂ f ′′e , and for v ⊂ f , a vertex included in a face f ,
there are exactly two edges that are included in between v and f, v ⊂ e′v, f ⊂ f and
v ⊂ e′′v, f ⊂ f . More formally, this means that

∀ non-deg. e ∈ �1: There are exactly two non-deg. f ′e �= f ′′e ∈ �2

with di ′( f ′e) = e = di ′′( f ′′e ) for some i ′, i ′′ ∈ {0, 1, 2}.

∀ non-deg. v ∈ �0, f ∈ �2: If d j (di ( f )) = v for some i ∈ {0, 1, 2}, j ∈ {0, 1},
then there exist exactly two non-deg. e′v, f �= e′′v, f ∈ �1 with

di ′( f ) = e′v, f and d j ′(e
′
v, f ) = v for some i ′ ∈ {0, 1, 2}, j ′ ∈ {0, 1},

di ′′( f ) = e′′v, f and d j ′′(e
′′
v, f ) = v for some i ′′ ∈ {0, 1, 2}, j ′′ ∈ {0, 1}.

We remark that for every surface �, there always exists a regular simplicial set �•
whose geometric realization is the given surface, |�•| = �. For example, one such
decomposition is given in [GTZ, Eq. (3.1)]. For a regular simplicial surface, we obtain
natural elements in the Hochschild complex which we describe next. For this, we need
to use the sign induced by comparing orientations of a simplex and its faces.

Definition 5.8. If v is a vertex in the boundary of an edge e with arbitrarily chosen
orientation, then we set ρ(v, e) ∈ {+1,−1} to be +1 if v is the beginning point of e, and
−1 otherwise.

Furthermore, if f is a 2-simplex, and e is an edge in the boundary of the f , both
with arbitrarily chosen orientations, then we set ρ(e, f ) ∈ {+1,−1} to be +1, if the
orientation of e coincides with the orientation induced by f , and −1 otherwise. Here,
the induced orientation is the one described in our Convention 1.1(2). (For example, in
a simplicial set, if e = di ( f ), then ρ(e, f ) = (−1)i+1.)

Finally, define ρ(v, e, f ) := ρ(v, e) · ρ(e, f ).

Definition 5.9. First, there are natural elements in each A( f ),A(e), and A(v), given by
B f := Bi f ∈ A( f ), Ae := (ρ(e, f ′e)·Aie,i f ′e

⊗1+ρ(e, f ′e)·1⊗Aie,i f ′′e
) ∈ A(e) (where f ′e

and f ′′e are the two faces adjacent to the edge e), and gv := ⊗(v⊂e⊂ f )(giv,ie,i f )
ρ(v,e, f ) ∈

A(v), where the product is over all e and f with v ⊂ e ⊂ f for fixed v. Furthermore,
these give rise to natural elements (each of total degree 0) in C H (�•,U)• , by:

B�•f ∈
⊗

s∈�2
A(s) ⊂ C H (�•,U)• , B�•f := 1⊗ · · · ⊗ 1⊗ B f ⊗ 1⊗ · · · ⊗ 1,

A�•e ∈⊗s∈�1
A(s) ⊂ C H (�•,U)• , A�•e := 1⊗ · · · ⊗ 1⊗ Ae ⊗ 1⊗ · · · ⊗ 1,

g�•v ∈⊗s∈�0
A(s) ⊂ C H (�•,U)• , g�•v := 1⊗ · · · ⊗ 1⊗ gv ⊗ 1⊗ · · · ⊗ 1.

Then, define

h(�•,U) := exp

⎛

⎝
∑

non-deg. f

i · B�•f −
∑

non-deg. e

i · A�•e

⎞

⎠ •
⎛

⎝
∏

non-deg. v

g�•v

⎞

⎠ .

Then, let hol(�•,U) ∈ �0(M�,U (1)) by setting hol(�•,U) := I t (�•,U)(h(�•,U)).
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We can describe the 2-holonomy function hol(�•,U) ∈ �0(N (�•,U),U (1)) with
the usual formula for 2-holonomy, c.f. [GR, (2.14)].

Proposition 5.10. Let σ ∈ N (�•,U) ⊂ M� , i.e. σ : � → M, so that there is an
induced orientation on each face f coming from �, and choose an arbitrary (but fixed)
orientation for each edge e. Then we have

hol(�•,U)(σ ) = exp

⎛

⎝
∑

f

i ·
∫

f
σ ∗(Bi f )−

∑

e⊂ f

i · ρ(e, f ) ·
∫

e
σ ∗(Aie,i f )

⎞

⎠

·
∏

v⊂e⊂ f

gρ(v,e, f )
iv,ie,i f

(σ (v)).

Proof. By Proposition 5.6, the iterated integral maps shuffle product on the Hochschild
complex to the wedge product on forms of the mapping space �•(M�). Thus,

hol(�•,U)(σ )

= I t (�•,U)
⎛

⎝exp

⎛

⎝
∑

non-deg. f

i · B�•f −
∑

non-deg. e

i · A�•e

⎞

⎠ •
⎛

⎝
∏

non-deg. v

g�•v

⎞

⎠

⎞

⎠ (σ )

= exp

⎛

⎝
∑

non-deg. f

i · I t (�•,U)(B�•f )(σ )−
∑

non-deg. e

i · I t (�•,U)(A�•e )(σ )

⎞

⎠

·
⎛

⎝
∏

non-deg. v

I t (�•,U)(g�•v )(σ )

⎞

⎠ .

For the result, it now suffices to calculate the iterated integral map on B�•f , A�•e , and

g�•v ,

I t (�•,U)(B�•f )(σ )

=
∫


2

(
M� ×
2 ev−→ M�2

)∗
(1⊗ · · · ⊗ Bi f ⊗ · · · ⊗ 1)(σ ) =

∫

f
σ ∗(Bi f ), (5.5)

I t (�•,U)(A�•e )(σ )

=
∫


1

(
M�×
1 ev−→M�1

)∗
(1⊗ · · · ⊗ (ρ(e, f ′e) · Aie,i f ′e

+ ρ(e, f ′′e ) · Aie,i f ′′e
)

⊗ · · · ⊗ 1)(σ )

= ρ(e, f ′e)
∫

e
σ ∗(Aie,i f ′e

) + ρ(e, f ′′e )
∫

e
σ ∗(Aie,i f ′′e

), (5.6)

I t (�•,U)(g�•v )(σ )

=
∫


0

(
M� ×
0 ev−→ M�0

)∗
(1⊗ · · · ⊗ (⊗(v⊂e⊂ f )g

ρ(v,e, f )
iv,ie,i f

)⊗ · · · ⊗ 1)(σ )

=
∏

v⊂e⊂ f

gρ(v,e, f )
iv,ie,i f

(σ (v)). (5.7)

This completes the proof of the proposition. ��
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Corollary 5.11. The hol(�•,U) glue together to a global 0-form hol ∈ �0(M�,U (1))
as

hol|N (�•,U) = hol(�•,U).

Proof. It is a well-known fact that the formula in Proposition 5.10 gives a well-defined
function, i.e. transforms correctly under change of the choices of open sets, see e.g. [GR,
Sect. 2.2] or [RS, Sect. 2.2]. ��

We can also calculate the differential of the 2-holonomy in general. To this end, denote
by
∑

f H�•
f ∈ C H (�•,U)

1 the sum of placing the 3-curvature H at all non-degenerate
faces subject to the local data (�•,U),

H�•
f ∈

⊗

s∈�2

A(s) ⊂ C H (�•,U)• , H�•
f := 1⊗ . . . 1⊗ H ⊗ 1⊗ · · · ⊗ 1,

similar to the definition of B�•f in Definition 5.9. The local 1-forms I t (�•,U)
(∑

f H�•
f

) ∈
�1(N (�•,U)) coincide on the pullback of their intersections, and we denote by
I t (H) ∈ �1(M�) the global 1-form obtained from this.

Proposition 5.12. If we write hol ∈ �0(M�,C) and I t (H) ∈ �1(M�,C) by abuse of
notation, then we have the identity,

dDR (hol) = i · I t (H) · hol ∈ �1(M�,C).

Proof. We check the formula for an open set N (�•,U) ⊂ M� of some local data U ,
and use the calculation from Eqs. (5.5)–(5.7) in the proof of Proposition 5.10. Since dDR

is a derivation, we get that dDR(hol(�•,U)) is equal to

= dDR

⎛

⎝I t (�•,U)
⎛

⎝exp

⎛

⎝
∑

f

i B�•f −
∑

e

i A�•e

⎞

⎠ •
∏

v

g�•v

⎞

⎠

⎞

⎠

= dDR

⎡

⎣exp

⎛

⎝
∑

f

i ·
∫


2
ev∗(1⊗ . . . Bi f · · · ⊗ 1)

−
∑

e⊂ f

i · ρ(e, f ) ·
∫


1
ev∗(1⊗ . . . Aie,i f · · · ⊗ 1)

⎞

⎠ ·
⎛

⎝
∏

v⊂e⊂ f

gρ(v,e, f )
iv,ie,i f

⎞

⎠

⎤

⎦

= exp

⎛

⎝
∑

f

i ·
∫


2
ev∗(. . . Bi f . . . )−

∑

e⊂ f

i · ρ(e, f ) ·
∫


1
ev∗(. . . Aie,i f . . . )

⎞

⎠

·
∏

v⊂e⊂ f

gρ(v,e, f )
iv,ie,i f

·
⎡

⎣dDR

⎛

⎝
∑

f

i ·
∫


2
ev∗(. . . Bi f . . . )

−
∑

e⊂ f

i · ρ(e, f ) ·
∫


1
ev∗(. . . Aie,i f . . . )

⎞

⎠ +
∑

v⊂e⊂ f

g−ρ(v,e, f )
iv,ie,i f

· dDR(g
ρ(v,e, f )
iv,ie,i f

)

⎤

⎦ .
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In the last expression, the terms in front of the square bracket are precisely hol(�•,U),
so that we are left to show that the term in the last square bracket is equal to
i · I t (�•,U)

(∑
f H�•

f

)
.

Now, the integration along a fiber formula, and the relations of the connection of a
gerbe (Definition 4.5), give the following results:

dDR

∫


2
ev∗(. . . Bi f . . . )

= (−1)2
∫


2
dDR(ev

∗(. . . Bi f . . . ))− (−1)2
∫

∂
2
ev∗(. . . Bi f . . . )

=
∫


2
ev∗(. . . H . . . )−

∫

∂
2
ev∗(. . . Bi f . . . ),

together with,

dDR

∫


1
ev∗(. . . Aie,i f . . . )

= (−1)1
∫


1
dDR(ev

∗(. . . Aie,i f ) . . . )− (−1)1
∫

∂
1
ev∗(. . . Aie,i f . . . )

= −
∫


1
ev∗(. . . (Bi f − Bie ) . . . ) + (Aie,i f |(endpt. v of e) − Aie,i f |(beginningpt. v of e)),

and

g−ρ(v,e, f )
iv,ie,i f

· dDR
(
gρ(v,e, f )

iv,ie,i f

) = −i · ρ(v, e, f ) · (Aiv,ie + Aie,i f + Ai f ,iv ).

Now, several terms from the square bracket cancel as follows. For each boundary com-
ponent e of f , i.e. e = di ( f ), we have

−
∫

∂
2
ev∗(. . . Bi f . . . )−(−ρ(e, f ))

∫


1
ev∗(. . . Bi f . . . )=±

∫

(other)
ev∗(. . . Bi f . . . ),

whereas the term −(−ρ(e, f ))
∫

1 ev∗(. . . (−Bie ) . . . ) appears twice for the two dif-

ferent faces f = f ′e, f ′′e with opposite orientations ρ(e, f ′e) = −ρ(e, f ′′e ), so that
these terms also cancel. Next, at the beginning point v′ and endpoint v′′ of e, we have
ρ(v′, e, f ) = ρ(e, f ) and ρ(v′′, e, f ) = −ρ(e, f ), so that,

at v′ : −(−ρ(e, f ))Aie,i f − ρ(v′, e, f )Aie,i f = 0,

at v′′ : +(−ρ(e, f ))Aie,i f − ρ(v′′, e, f )Aie,i f = 0.

Furthermore, ρ(v, e, f ) · Aie,i f appears twice for beginning and endpoints v′ and v′′
with ρ(v′, e, f ) = −ρ(v′′, e, f ), so that these terms cancel. Similarly ρ(v, e, f ) · Ai f ,iv
appears for the two edges e′v, f and e′′v, f (see Definition 5.7), and the induced signs also
necessarily differ ρ(v, e′v, f , f ) = −ρ(v, e′′v, f , f ) making these terms vanish. The only
terms that are left over in the last square bracket are

∑

f

i ·
∫


2
ev∗(. . . H . . . ) = i · I t (�•,U)

(∑

f

H�•
f

)
= i · I t (H)|N (�•,U).

This is what we needed to show. ��
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One immediate corollary of Proposition 5.12 is the analog of Corollary 2.2(1); com-
pare this also with [Br, p. 239, Eq. (6-9)].

Corollary 5.13. If the 3-curvature vanishes, H = 0, then also dDR(hol) = 0.

The above Proposition 5.12 shows that the 2-holonomy is, in general, not a closed
form. In the case of the torus, this is rectified by the higher holonomy terms, leading to
an equivariantly closed form on the torus mapping space, as in the previous Sect. 4.

Remark 5.14. In the previous section, we have chosen to give the proofs of the prop-
erties of the 2-holonomy function and its higher analogs on the level of forms on the
mapping space; see in particular Propositions 4.11, 4.15, 5.10, 5.12, and Theorem 4.17.
However, we could have equally well have given these proofs on the Hochschild side,
before applying the iterated integral map. We hope that these types of considerations
may be useful in a future discussion concerning non-abelian gerbes.

Acknowledgements. We would like to thank Ralph Cohen, Kevin Costello, Thomas Schick, Stefan Stolz,
Dennis Sullivan, and Peter Teichner for useful conversations concerning the topics of this paper. The authors
were partially supported by the NSF grant DMS-0757245. The first and second authors were supported in part
by grants from The City University of New York PSC-CUNY Research Award Program.

References

[A] Atiyah, M.F.: Circular symmetry and stationary phase approximation. In: Proceedings of the Con-
ference in Honor of L. Schwartz, Vol. 2. Paris: Astérisque, 1985, pp. 43–59

[AB] Atiyah, M.F., Bott, R.: The moment map and equivariant cohomology. Topology 23(1), 1–28 (1984)
[BS] Baez, J.C., Schreiber, U.: Higher gauge theory. In: Categories in Algebra, Geometry and Mathemat-

ical Physics. Contemp. Math. 431, Providence, RI: Amer. Math. Soc., 2007, pp. 7–30
[B] Bismut, J.-M.: Index theorem and equivariant cohomology on the loop space. Commun. Math.

Phys. 98, 213–237 (1985)
[BM] Breen, L., Messing, W.: Differential geometry of gerbes. Adv. Math. 198(2), 732–846 (2005)
[Br] Brylinski, J.L.: Loop spaces, characteristic classes and geometric quantization. In: Progress in Math-

ematics, 107. Boston, MA: Birkhuser Boston Inc., 1993
[C1] Chen, K.-T.: Iterated path integrals. Bull. AMS 83(5), 831–879 (1977)
[C2] Chen, K.-T.: Iterated integrals of differential forms and loop space homology. Ann. of Math.

(2) 97, 217–246 (1973)
[D] Dumitrescu, F.: Superconnections and parallel transport. Pacific J. Math. 236(2), 307–332 (2008)
[GR] Gawedzki, K., Reis, N.: WZW branes and gerbes. Rev. Math. Phys. 14, 1281–1334 (2002)
[GJP] Getzler, E., Jones, J.D.S., Petrack, S.: Differential forms on loop spaces and the cyclic bar com-

plex. Topology 30(3), 339–371 (1991)
[GTZ] Ginot, G., Tradler, T., Zeinalian, M.: A chen model for mapping spaces and the surface product. Ann.

Sci. del’Ens, Ser. 4 43(5), 811–881 (2010)
[GJ] Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory, Birkhäuser, 1999
[H] Hamilton, R.: The inverse function theorem of nash and moser. Bull. of AMS 7(1), 65–222 (1982)
[Ha] Han, F.: Supersymmetric QFT, Super Loop Spaces and Bismut-Chern Character. http://arXiv.org/

abs/0711.3862v3 [math.D6], 2008
[Hi] Hitchin, N.: Lectures on special Lagrangians. http://arXiv.org/abs/math/9907034v1 [math.D6], 1999
[Ma] May, J.P.: Simplicial Objects in Algebraic Topology. Amsterdam: D. Van Norstrand, 1967; reprinted

by the University of Chicago Press, 1982 and 1992
[Mu] Murray, M.K.: Bundle gerbes. J. London Math. Soc. (2) 54(2), 403–416 (1996)
[PM] Picken, R., Mackaay, M.: Holonomy and parallel transport for abelian gerbes. Adv. in Math. 170(2),

287–339 (2002)
[P] Pirashvili, T.: Hodge decomposition for higher order hochschild homology. Ann. Sci. École Norm.

Sup. (4) 33(2), 151–179 (2000)
[RS] Runkel, I., Suszek, R.: Gerbe-holonomy for surfaces with defect networks. Adv. Theor. Math.

Phys. 13, 1137–1219 (2009)
[SSW] Schreiber, U., Schweigert, C., Waldorf, K.: Unoriented WZW models and holonomy of bundle

gerbes. Commun. Math. Phys. 274(1), 31–64 (2007)

http://arXiv.org/abs/0711.3862v3
http://arXiv.org/abs/0711.3862v3
http://arXiv.org/abs/math/9907034v1


T. Tradler, S. O. Wilson, M. Zeinalian

[SW] Schweigert, C., Waldorf, K.: Gerbes and Lie Groups. http://arXiv.org/abs/0710.5467v1 [math.D6],
2007

[ST] Stolz, S., Teichner, P.: Super symmetric Euclidean field theories and generalized cohomology. http://
arXiv.org/abs/1108.0189v1 [math.AT], 2011

[TTW] Terilla, J., Tradler, T., Wilson, S. O.: Homotopy DG algebras induce homotopy BV algebras. http://
arXiv.org/abs/1106.1856v1 [math.QA], 2011

[W] Witten, E.: Supersymmetry and morse theory. J. Diff. Geom. 17, 661–692 (1982)
[Z] Zhang, W.: Lectures on Chern-Weil theory and Witten deformations. (English summary). Nankai

Tracts in Mathematics, 4. River Edge, NJ: World Scientific Publishing Co., Inc., 2001

Communicated by A. Connes

http://arXiv.org/abs/0710.5467v1
http://arXiv.org/abs/1108.0189v1
http://arXiv.org/abs/1108.0189v1
http://arXiv.org/abs/1106.1856v1
http://arXiv.org/abs/1106.1856v1

	Equivariant Holonomy for Bundles and Abelian Gerbes
	Abstract:
	1 Introduction
	2 Equivariant Chern Character for Vector Bundles
	2.1 Definition of holonomy
	2.2 The Chen iterated integral map and holonomy
	2.3 The higher holonomies hol2k

	3 Equivariant Chern Character Locally Defined
	3.1 The local Hochschild complex and iterated integral
	3.2 Holonomy expressed locally
	3.3 The higher holonomies hol2k

	4 Equivariant 2-Holonomy for Abelian Gerbes
	4.1 Iterated integral for the torus in the (p,q)-simplicial model
	4.2 2-Holonomy along the torus
	4.3 Higher 2-holonomies along the torus
	4.4 Compatibility check

	5 2-Holonomy Along a Surface
	5.1 Simplicial sets and the local Hochschild complex
	5.2 2-Holonomy along a surface

	Acknowledgements.
	References


