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An elementary differential extension of odd K-theory
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Abstract

There is an equivalence relation on the set of smooth maps of a manifold
into the stable unitary group, defined using a Chern-Simons type form,
whose equivalence classes form an abelian group under ordinary block
sum of matrices. This construction is functorial, and defines a differential
extension of odd K-theory, fitting into natural commutative diagrams and
exact sequences involving K-theory and differential forms. To prove this
we obtain along the way several results concerning even and odd Chern and
Chern-Simons forms.
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1. Introduction

Differential cohomology theories provide a geometric refinement of cohomology
theories which, intuitively, contain additional differential-geometric information.
An important first example is ordinary differential cohomology where elements
of ordinary cohomology, such as a first Chern class, are enriched by additional
geometric data, such as a line bundle with connection, [ChS], [D].

The existence of such a differential refinement of a cohomology theory was
proposed and proved by Hopkins and Singer in [HS], with an axiomatic characteri-
zation given in [BS3]. Several recent works have centered around the construction
and properties of differential K-theory, [HS], [BS], [BS3], [L], [SS], [FL], whose
additive structure splits into even and odd degree parts, just as in K-theory.

As with all cohomology and differential theories, it is particularly important to
have nice geometric models for the theories, as these provide both a means by which
to understand the theories, and the form in which they often appear in mathematical
and physical discussions.

In [SS] the authors construct the even degree part of differential K-theory
geometrically using bundles with connection up to Chern-Simons equivalence. In
particular, they show the data of an extra odd differential form appearing in several
other presentations is superfluous. In this paper we provide the analogous geometric
model for a differential extension of the odd degree of K-theory.

For the model given here, a cocycle is simply a smooth map into the infinite
unitary group, where equivalence of cocycles is determined by a Chern-Simons
type differential form, i.e. the transgression form for the odd Chern character
form. Several new results proved here show that the resulting set of equivalence
classes form an abelian group, determining a differential extension of odd K-theory
(Definition 4.1 and Theorem 5.7).

Of particular importance, we show every exact odd form on any manifold M is
obtained as the odd Chern form of some map into the stable unitary group (Corollary
2.7), and every even differential form, modulo exact, is given as a Chern-Simons
form of a path of maps into the stable unitary group (Corollary 5.8). Finally, we
also prove a differential-form version of Bott periodicity, identifying all even Chern
forms, modulo exact forms, with the set of Chern-Simons forms obtained from
based loops in Map.M;U / (Theorem 3.5).

In the appendix we show for completeness sake that if one includes the data of
even differential forms into the construction, then the resulting differential extension
(which is closer to the models in the literature) is in fact isomorphic to the leaner
model in the bulk of the paper. The advantage of our first model lies in that it
does not require the data of an additional even differential form. In particular, this
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implies that a map from a compact manifold M into the infinite unitary group U
contains calculable information beyond the homotopy class representing an element
in K�1.M/, and also calculable information beyond the odd Chern character given
by pullback of the canonical odd form on U .

In [BS] it is shown that differential extensions of odd K-theory are not unique.
In fact there are “exotic additive structures” one can put on the underlying set of odd
differential K-theory which still yield an odd differential extension. Nevertheless,
since the abelian group structure we construct here is induced by ordinary block sum
of matrices, it seems quite likely that the differential extension given here agrees
with that of odd differential K-theory, which itself is unique up to a unique natural
isomorphism [BS3].

In future work we hope to build a multiplicative structure for the differential
extension given here, which would in particular imply that the constructions in this
paper yield odd differential K-theory, [BS3]. We also hope to apply the ideas in this
paper to yield an elementary differential refinement of algebraic K-theory. Finally,
just as in [TWZ] where it is shown that the even part of differential K-theory admits
a refinement incorporating the free loop space, we expect the same to be true for the
odd version constructed here, and for this to have interesting applications to loop
groups.

Acknowledgments: We would like to thank Dennis Sullivan, Dan Freed, and Ulrich
Bunke for useful conversations concerning the topics of this paper. The first and
second authors were supported in part by grants from The City University of New
York PSC-CUNY Research Award Program. The third author would like to thank
the Max-Planck-Institut für Mathematik for their hospitality and support during his
visit.

2. The odd Chern form

In this section we give elementary definitions of the odd Chern forms in differential
geometry. We will consider the category of compact manifoldsM with corners, and
smooth maps between them. Let �even.M IR/ and �odd.M IR/ denote the space of
even and odd real differential forms onM , and�even

cl
.M IR/ and�odd

cl
.M IR/ denote

the subspaces of closed differential forms.

Recall that for a complex bundle E!M with hermitian metric, equipped with
a unitary connection r, and associated curvature R, we have the following closed
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even real valued differential form, known as the Chern character1,

Ch.r/D Tr
�
e

1
2�i

R
�
2�even

cl .M IR/: (2.1)

Furthermore, for a path of such connections rs , there is an odd differential form
CS.rs/ 2�odd.M IR/, known as the Chern-Simons form,

CS.rs/

D Tr

0
BB@
Z 1

0

X
n�0

1

.2�i/nC1
1

.nC 1/Š

nC1X
iD1

nC1 factors

£

Rs ^ ��� ^Rs ^ .rs/
0

”

i th

^Rs ^ ��� ^Rs

1
CCAds

(2.2)

where .rs/0 D @
@s
rs and Rs is the curvature of rs . This form satisfies the property

dCS.rs/D Ch.r1/�Ch.r0/: (2.3)

Let U D lim
n!1

U.n/ be the stable unitary group. Elements in this group can be
interpreted as infinite unitary matrices whose entries differ from the identity in only
finitely many places. So, such an element determines an element of U.N/ for N
sufficiently large, which is well defined up to block sum with an identity matrix.

For any compact smooth manifold with cornersM , letMap.M;U / be the space
of smooth maps from M to U , i.e. Map.M;U / D lim

n!1
Map.M;U.n//. This is a

monoid under the ordinary product of matrices in U . It is also true thatMap.M;U /
is a monoid under block sum, denoted ˚, though this operation is not continuous.
To be clear, for g;h 2 Map.M;U / we define g ˚ h by the ordinary block sum
A˚B˚ Id1, where Id1 is an infinite identity matrix, A 2Map.M;U.n// where
n is the least integer such that g.p/D A.p/˚ Id1 for all p 2M , and B is defined
similarly in terms of h. On homotopy classes of maps, which defines the set we
denote by K�1.M/, these two products are equal, and define an abelian group.

An element g 2Map.M;U / determines a connection d C g�1dg on the trivial
bundle CN �M ! M for some large N , which is unitary with respect to the
standard hermitian metric. This bundle with connection is well defined up to
direct sum with another trivial bundle Ck �M ! M , with standard flat “zero”
connection d . Note that d C g�1dg is gauge equivalent to d and flat, and so
Ch.d C g�1dg/ D Ch.d/ . So, for all g 2 Map.M;U /, if rs D d C sg�1dg

then by Equation (2.3), CS.rs/ 2�odd.M/ is d -closed since

d
�
CS.d C sg�1dg/

�
D Ch.d Cg�1dg/�Ch.d/D 0:

1We note that the factor 1=.2�i/ in (2.1) is necessary and used in Theorem 3.5.
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Definition 2.1 We define the odd Chern Character map,

Ch WMap.M;U /!�odd
cl .M IR/;

by
Ch.g/D CS.d C sg�1dg/: (2.4)

We remark that the definition above is independent of the integer N chosen to
realize the bundle with connection over M , since the addition of an identity block
to g changes g�1dg only by a block sum with a zero matrix. Additionally, this
odd form is independent, modulo an exact form, of the choice of trivial connection
d , see [Zh]. The notation is chosen so as to mirror exactly the presentation of the
Chern-Character and Chern-Simons form in the even case, with a degree shift by
one.

The odd Chern character can be computed explicitly, see for example [G].

Lemma 2.2 For any g 2Map.M;U / we have

Ch.g/D Tr
X
n�0

.�1/n

.2�i/nC1
nŠ

.2nC 1/Š
.g�1dg/2nC1

Proof: Let AD g�1dg and As D sg�1dg so that .As/0 D A and Rs D�s.1� s/A �
A. Then

Ch.g/DTr
X
n�0

1

.nC 1/Š

1

.2�i/nC1

nC1X
iD1

Z 1

0

Rs ::: .As/0
”

i -th

:::Rsds

D
X
n�0

1

nŠ

1

.2�i/nC1
Tr
Z 1

0

.�s.1� s//n A:::A
•

2nC1 factors

ds

D
X
n�0

1

nŠ

1

.2�i/nC1
.�1/n

nŠnŠ

.2nC 1/Š
Tr.A2nC1/

D
X
n�0

.�1/n

.2�i/nC1
nŠ

.2nC 1/Š
Tr.A2nC1/

where the relation
R 1
0 s

k.1� s/`ds D kŠ`Š
.kC`C1/Š

was used.

Definition 2.3 Let ! be the canonical left-invariant 1-form on U.n/, with values in
the Lie algebra u.n/ of U.n/, and define ‚ 2�odd.U.n/IR/ by

‚D Tr
X
n�0

.�1/n

.2�i/nC1
nŠ

.2nC 1/Š
!2nC1: (2.5)

Note this is real valued since !=i and !2=i are hermitian.
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The odd Chern character Ch.g/ is simply the pullback of ‚ along a map g W
M ! U .

Lemma 2.4 For any g WM ! U.n/, we have

Ch.g/D g�.‚/D Tr
X
n�0

.�1/n

.2�i/nC1
nŠ

.2nC 1/Š
g�.!/2nC1:

Proof: This follows from Lemma 2.2 and the fact that g�.!/D g�1dg.

It follows that the odd Chern character is natural via pullback along maps f W
N ! M , and that Ch.g/ is a well defined piecwise smooth form whenever g W
M ! U is piecewise smooth.

For two elements g;h 2Map.M;U /, we denote by g˚h 2Map.M;U / and by
g�1 2Map.M;U / the elements given by taking the block sums and inverses in U ,
respectively.

Corollary 2.5 The Chern Character map Ch W Map.M; U / ! �odd
cl
.M IR/ is a

monoid homomorphism, i.e.

Ch.g˚h/D Ch.g/CCh.h/;

and furthermore satisfies Ch.g�1/D�Ch.g/.

Proof: These follows from the previous Lemma 2.2 since

.g˚h/�1d.g˚h/D .g�1dg/˚h�1dh;

trace is additive, and cyclically invariant, and .g�1/�1d.g�1/D�dgg�1.

Example 2.6 (M is a sphere) For all n� 0, there is a map g W S2nC1! U such that
the degree 2nC 1 part of the differential form Ch.g/ equals a non-zero constant
multiple of the standard volume form on the .2nC 1/-sphere S2nC1 � R2nC2. The
earliest reference we found for this is [LT, p. 1496, eq. (2.13)], where the authors
construct a map g W S2nC1! U.2nC1/ by use of the Clifford algebra Cl�.2nC 2/
with generators �1;:::;�2nC3. Explicitly, the map is given by

g D �2nC2

2nC2X
iD1

�ixi

for .x1;:::;x2nC2/ 2 S2nC1 �R2nC2. We remark that this construction satisfies two
further properties: Ch.g/ is exact in degrees k < 2nC 1 and vanishes in degrees
k > 2nC1. These follow from the deRham theorem and the cohomology of S2nC1,
since Ch.g/ is closed.
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Corollary 2.7 Let Mapo.M;U / denote the identity component of
Map.M;U /. For all compact manifolds M with corners, the image of the map
Ch W Mapo.M;U / ! �odd

cl
.M IR/ contains all exact odd real valued differential

forms on M .

Proof: If ! 2�1.M IR/ is exact, then ! D df for some function f WM !R. We
let g D e2�if , so that Ch.g/ equals df D !, where Ch.g/ vanishes outside degree
1 since .g�1dg/2 D 0. Finally, note g 2 Mapo.M;U.1// since gt D e2�it �f is a
path to the constant identity map.

By induction we assume we may obtain all odd exact forms onM of degree less
than or equal to 2j � 1 as Ch.g/ for some map g 2Mapo.M;U /. We may always
choose an imbedding M !Rk for some k > 2j C 1, and since the pullback map is
natural and surjective on exact forms, and Ch is natural via pullback, it suffices to
show for every exact ! 2�2jC1.Rk/ there is a mapMapo.Rk;U / such that Ch.g/
equals ! in degree 2j C 1, vanishes in higher degree, and is exact in lower degrees.
Then by the inductive hypothesis, using the relations in Corollary 2.5, we may use
block sum and inverses to construct all odd exact forms on M of degree less than or
equal to 2j C 1 as Ch.g/ for some Mapo.Rk;U /, completing the induction.

An arbitrary exact 2j C 1 form on Rk can be written as a sum of terms of the
form dfdxi1 :::dxi2j , so again by Corollary 2.5, using block sums, it suffices to
show that for an arbitrary function f W Rk ! R there is a map h W W ! U , where
W � Rk is some neighborhood of M , such that Ch.h/ equals dfdx1 :::dx2j in
degree 2j C 1, vanishes in higher degree, and is exact in lower degrees. In order to
define h WW ! U , we consider the following composition of maps,

W
F

D
2jC1
r

s
S2jC1

g
U.2jC1/� U

1
N
dfdx1 :::dx2j dx1 :::dx2jC1 D s

�.dV / dV

Here g W S2jC1 ! U.2jC1/ � U is from Example 2.6, giving up to a constant
the volume form dV on S2jC1 as the degree 2j C 1 component of Ch.g/, with
all lower degree components exact, and all higher degree components vanishing.
Let s W D2jC1 ! S2jC1 be any smooth imbedding of the disk into the sphere.
The pullback of the form dV on the sphere is some volume form on the disk. By
Moser’s theorem, which shows any two volume forms of equal volume are related
by pullback along an orientation preserving diffeomorphism, [M], and by suitably
rescaling the disk to appropriate radius r , we may assume that this pullback form is
the standard volume form dx1 ���dx2jC1 on D2jC1

r .
Now, for some contractible neighborhood W � Rk contained in a compact set,
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choose N 2N so that the map

F.x1;:::;xk/D .1=Nf .x1;:::;xk/;x1;:::;x2j /

has image contained in D2jC1. Then F �.dx1 :::dx2jC1/ D 1=Ndfdx1 :::dx2j , so
that the pullback gives 1=N times the desired form dfdxi1 :::dxi2j . Taking the N -
fold block sum of this map .g ı s ı F / W W ! U with itself defines the desired
function h W W ! U . Finally, we have h 2 Mapo.W;U / since W is contractible.

Remark 2.8 It is already known from [SS] that every odd form onM equalsCS.rs/
for some path of connections rs . Corollary 2.7 states furthermore that, if the odd
form on M is exact, the path of connections can be chosen to be rs D d C sg�1dg
for some g 2Mapo.M;U /.

3. The Chern Simons form

It is a natural question to ask how the odd Chern form Ch.g/ depends on g. Let
I D Œ0;1�. For a smooth map gt W M � I ! U.n/ � U , there is a smooth even
differential form that interpolates between Ch.g1/ and Ch.g0/, in the following
way. We define CS.gt / 2�even.M IR/ by

CS.gt /D

Z
I

Ch.gt /; (3.1)

where Ch.gt / 2�odd
cl
.M � I IR/ and

R
I is the integration along the fiber

M � I
gt

R
I

U

M

We note thatCS.gt / is independent of parameterization, and so any gt WM�Œa;b�!
U can always be reparameterized to domain M � I , without changing the Chern-
Simons form on M .

By Stokes’ theorem we have

dCS.gt /D d

Z
I

Ch.gt /D

Z
@I

Ch.gt /�

Z
I

dCh.gt /D Ch.g1/�Ch.g0/

since dCh.gt /D 0.
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Lemma 3.1 For any gt 2 Map.M � I;U / the odd Chern Simons form CS.gt / 2

�even.M IR/ associated to gt is

CS.gt /D Tr
X
n�0

.�1/n

.2�i/nC1
nŠ

.2n/Š

Z 1

0

.g�1t g0t / � .g
�1
t dgt /

2ndt:

Proof: By Lemma 2.4, we have Ch.gt / D Tr
P
n�0

.�1/n

.2�i/nC1
nŠ

.2nC1/Š
g�t .!/

2nC1.
The pullback of the canonical left invariant form ! on U.n/ along the map gt W
M �I ! U.n/ is g�t .!/D � @

@t
.g�1t dgt /dtCg

�1
t dgt D .g

�1
t g0t /dtCg

�1
t dgt , so the

result follows by the definition of integration along the fiber, and the trace property.
Note, that the signs work out correctly, since when moving, for example, the 1-form
g�1t dgt across the 2n-form g�1t dgt :::.g

�1
t g0t /dt :::g

�1
t dgt , we obtain

Tr
�
g�1t dgt

2n factors
¡

g�1t dgt :::.g
�1
t g0t /dt :::g

�1
t dgt

�

D Tr
� 2n factors
¡

g�1t dgt :::.g
�1
t g0t /dt :::g

�1
t dgt g�1t dgt

�
;

so that we obtain 2nC 1 times the same trace expression.
We restate the fundamental property for CS.gt / here, along with several others,

whose proofs are immediate from the definitions and Lemma 3.1.

Proposition 3.2 For any paths gt ;ht 2Map.M � I;U / we have

dCS.gt /DCh.g1/�Ch.g0/

CS.gt ˚ht /DCS.gt /CCS.ht /

CS.g�1t /D�CS.gt /

If gt and ht can be composed (i.e. if g1 D h0), then the composition gt �ht satisfies

CS.gt �ht /D CS.gt /CCS.ht /:

We note that composition may be done smoothly by defining gt � ht to be
constant equal to g1 D h0 on some interval, and reparametizing to obtain a function
on M � I .

The following lemma shows that the degree zero part of the even form CS.gt /

can be interpreted as a “winding number.” Let �U be the space of smooth based
loops in U .

Lemma 3.3 For any based loop gt 2�U ,

1

2�i
Tr
Z 1

0

g�1t g0t dt 2 Z
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Proof: Choose n such that gt 2�U.n/. We have

SU.n/ÌU.1/Š U.n/

Under the isomorphism .n;h/ 7! nh, the semi-direct group structure is given by

.n1;h1/ � .n2;h2/D .n1h1n2h
�1
1 ;h1h2/ .n;h/�1 D .h�1n�1h;h�1/

Therefore, if gt D .nt ;ht / under the isomorphism above, we have

g�1t g0t D h
�1
t n
�1
t n
0
tht Ch

�1
t h
0
t

where g�1t g0t 2 u.n/ and n�1t n
0
t 2 su.n/ and h�1t h

0
t 2 u.1/ D iR. Since su.n/

consists of trace zero matrices, Tr.h�1t n
�1
t n
0
tht /D 0, so it’s enough to show

1

2�i

Z 1

0

h�1t h
0
tdt 2 Z:

For any path ht W Œ0;1� ! U.1/ satisfying h.0/ D 1 we have h.s/ D e
R s
0 h
�1
t h0tdt

(i.e. the integral
R s
0 h
�1
t h
0
tdt is the logarithmic lift of ht by the covering exponential

map), since
k.s/D h�1s e

R s
0 h
�1
t h0tdt

satisfies k.0/D 1 and k0.s/D 0 for all s. So, for h.t/ 2�U.1/,

e
R 1
0 h
�1
t h0tdt D h.1/D 1; so that

Z 1

0

h�1t h
0
tdt 2 2�iZ:

If we move gt through a smooth family gst with fixed endpoints, the form
CS.gst / changes only by an exact form, as we now show. For gst WM � I � I ! U ,
where .s;t/ 2 I � I , let H.gst / 2�

odd.M IR/ be given by

H.gst /D

Z
I�I

Ch.gst /

where Ch.gst / 2�
odd.M � I � I IR/ and

R
I�I is the integration along the fiber

M � I � I
gst

R
I�I

U

M

By Stokes’ theorem we have

dH.gst /D

Z
@.I�I/

Ch.gt /C

Z
I�I

dCh.gt /D CS.g
1
t /�CS.g

0
t /�CS.g

s
1/CCS.g

s
0/

since dCh.gt /D 0. In particular we have
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Proposition 3.4 Let gst WM � I � I ! U be a smooth map which is constant along
t D 0 and t D 1, i.e. gs0 D g

0
0 and gs1 D g

0
1 for all s. Then

H.gst /D Tr
X
n�0

1�i;j�2nC1

i¤j

.�1/n

.2�i/nC1
nŠ

.2nC 1/Š

� .�1/".i;j /
Z 1

0

Z 1

0

2nC1 terms
¦

g�1dg ��� .g�1
@

@t
g/

™

i th

��� .g�1
@

@s
g/

™

j th

���g�1dg dtds

where g D gst and ".i;j /D
�
j � i � 1; for i < j
j � i; for i > j

. The form H satisfies

dH.gst /D CS.g
1
t /�CS.g

0
t /:

Proof: The second claim is a special case of what was shown above. The first
follows from Lemma 2.4, the formula for integration along the fiber, and the fact
that g�.!/ D .g�1 @

@t
g/dt C .g�1 @

@s
g/ds C .g�1dg/, where g D gst , since ! is a

1-form. The sign .�1/".i;j / comes from moving dt next to ds, so that the 2-form
dtds can be moved to the end, since it commutes with all other factors.

The following theorem shows that the collection of even forms fCS.gt /g, for
gt WM �S

1! U satisfying g0 D g1 D 1, are the same modulo exact forms, as the
set of Chern forms fCh.r/g for some connection r.

Theorem 3.5 Let M be a closed manifold. For every bundle with connection
.E;r/, there is a map g W M ! �U such that CS.gt / D Ch.r/. Conversely,
for every map g W M ! �U there is a bundle with connection .E;r/ such that
Ch.r/� CS.gt / modulo exact forms.

Proof: Let .E;r/ be a bundle with connection over M , whose Chern character is
Ch.r/. By a theorem of Narasimhan and Ramanan [NR] there is an isomorphism of
E onto a subbundle of a trivial CN -bundle, such that r is obtained as the restriction
of the trivial connection d on this trivial CN -bundle. Let P W M ! MN�N be
the projection operator whose image defines this bundle, so that the connection on
Im.P / is given by r.s/D P.ds/. A calculation shows the curvature of r is given
by R.s/D P.dP /2.s/, so that

Ch.r/D Tr.e
1
2�i

R/D Tr
X
n�0

1

.2�i/n
1

nŠ
P.dP /2n
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We define gt WM �S1! U by

gt D e
2�iP t D Id C .e2�it � 1/P

and show that CS.gt /D Ch.r/. We have

g�1t g0t D 2�iP

and

g�1t dgt D
�
Id C .e�2�it � 1/P

��
.e2�it � 1/dP

�
D .e2�it � 1/dP C .e2�it � 1/.e�2�it � 1/PdP:

Since P 2 D P , we have dPP CPdP D dP , so PdP D dP � dPP D dPP?, so
.PdP /2 D 0 and so dPPdP D P?.dP /2. Therefore,

.g�1t dgt /
2D .e2�it � 1/2.dP /2C .e2�it � 1/2.e�2�it � 1/

�
P.dP /2CP?.dP /2

�

D .e2�it � 1/2e�2�it .dP /2 D�4sin2.�t/.dP /2;

so that
g�1t g0t .g

�1
t dgt /

2n D 2�i.�4/nsin2n.�t/P.dP /2n: (3.2)

Using the fact that

Z 1

0

sin2n.�t/dt D
1

�

Z �

0

sin2n tdt D
1

4n

 
2n

n

!

we get Z 1

0

g�1t g0t � .g
�1
t dgt /

2ndt D .�1/n2�i

 
2n

n

!
P.dP /2n

and thus from Lemma 3.1:

CS.gt /D Tr
X
n�0

.�1/n

.2�i/nC1
nŠ

.2n/Š

Z 1

0

.g�1t g0t / � .g
�1
t dgt /

2ndt

D Tr
X
n�0

1

.2�i/n
1

nŠ
P.dP /2n D Ch.r/: (3.3)

We now show the second statement in the theorem. Let g W M ! �U be
given, that is gt W M � S1 ! U . It suffices to show there is a smooth homotopy
gst WM �S

1� I ! U such that gs0 D g
s
1 D 1, g0t D gt , and g1t .x/D exp.2�iP.x/t/
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where P W M ! Mn�n is some smooth matrix valued function on M and each
P.x/ is a projection. Then, by Proposition 3.4, CS.g1/ � CS.g0/ is exact. The
statement then follows from the previous calculation since CS.g1/D Ch.r/ where
r is the connection on the bundle determined by P .

We will use ideas from proofs of Bott periodicity [McD, AP, B]. We recall that
those proofs identify a geometric model for the space BU �Z as follows. For an
infinite dimensional Hilbert space H one can consider the contractible space E of
finite rank hermitian operators with eigenvalues in Œ0;1�. There is a map fromE toU
given by A 7! exp.2�iA/. After stabilization the pre-image of 1 2 U is shown to be
homotopy equivalent to BU �Z, see e.g. [B]. Note that exp.2�iA/D 1 if and only
if the eigenvalues of A are in f0;1g, i.e. A is the projection onto a finite dimensional
subspace. Conversely, given such a subspace, there is a unique projection operator
onto the given finite dimensional subspace.

Since E is contractible via the path tP , it follows that the map BU �Z!�U ,
defined on representatives P by exp W P 7! exp.2�iP t/, is a homotopy equivalence.
By Whitehead’s theorem, there is a map � W �U ! BU �Z which is a homotopy
inverse to this map.

The classifying space BU � Z may be constructed as a limit of the finite
dimensional smooth Grassmann manifolds Gk;n. In fact, there is a cell structure
for BU �Z so that any finite subcomplex is contained in some Gk;n. This implies
that any continuous map from a compact space into BU �Z has image in Gk;n for
some k and n.

It follows that the composition � ı gt W M ! �U ! BU � Z has image in
the smooth manifold Gk;n for some k and n. By Whitney’s approximation theorem,
the continuous map � ı gt is homotopic to a smooth map P W M ! Gk;n, where
each P.x/ 2 Gk;n is regarded as a projection onto a k-dimensional subspace. Then
gt is homotopic to exp.2�i�.gt //, which is homotopic to exp.2�iP t/. Again,
by compactness and Whitney’s approximation theorem, we can arrange for the
homotopy gst between g0t D gt and g1t D exp.2�iP t/ to be smooth. This completes
the proof.

The following important technical lemma will be used below to show that
certain equivalence classes of elements of Map.M;U /, to be defined later using
the Chern Simons forms, have well defined abelian group structures.

Lemma 3.6 For any g;h 2 Map.M;U /, there exists a path ft 2 Map.M � I;U /
such that

f .0/D g˚h; f .1/D h˚g; and CS.ft /D 0:

Also, for any g 2Map.M;U /, there exists a path kt 2Map.M � I;U / such that

k.0/D g˚g�1; k.1/D id; and CS.kt /D 0:
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Proof: We may assume that g and h are given by elements in Map.M;U.n// for
a common integer n, after possibly stabilizing one of the two maps. To simplify
the notation we’ll define our paths on the interval Œ0;�=2�, which can always be
reparameterized to be a path on I D Œ0;1�, with the same properties as stated above.
To prove both statements we will use the path X W Œ0;�=2�! U.2n/,

X.t/D

�
cost sint
�sint cost

�
;

where each entry is an n-by-nmatrix, given by multiplying it with the n-dimensional
identity matrix. Using this, we have

J DX 0.t/X.t/�1 DX.t/�1X 0.t/D

�
0 1

�1 0

�
:

For the first statement, consider the path ft 2Map.M � Œ0;�=2�;U.2n//,

ft DX.t/FX.t/
�1

where

F D

�
g 0

0 h

�

so that f .0/D g˚ h and f .�=2/D h˚ g. Then, using the fact that @
@t
.X.t/�1/D

�X.t/�1X 0.t/X.t/�1, we get

f �1t f 0t DX.t/F
�1X.t/�1.X 0.t/FX.t/�1�X.t/FX.t/�1X 0.t/X.t/�1/

DX.t/F �1JFX.t/�1�J

and

f �1t dft DX.t/F
�1X.t/�1.X.t/dFX.t/�1/DX.t/F �1dFX.t/�1:

So,

Tr
�
f �1t f 0t .f

�1dft /
2n
�
DTr

�
.X.t/F �1JFX.t/�1�J /.X.t/F �1dFX.t/�1/2n

�
DTr

�
X.t/F �1JF.F �1dF /2nX.t/�1

�JX.t/.F �1dF /2nX.t/�1
�

DTr
�
J.dFF �1/2n

�
�Tr

�
J.F �1dF /2n

�
D 0

where in the second to last step we used that trace is invariant and X�1JX.t/D J ,
and the final step we note the matrices J.dFF �1/2n and J.F �1dF /2n are block
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matrices with zero on the diagonal blocks. Using the explicit formula for CS.ft /
from Lemma 3.1, this proves the first statement.

For the second statement, consider the path kt 2Map.M � Œ0;�=2�;U.2n//,

kt DGX.t/HX.t/
�1;

where

G D

�
g 0

0 1

�
H D

�
1 0

0 g�1

�
:

Then k.0/D g˚g�1 and k.�=2/D I2n. We need to show that CS.kt /D 0.
Using again that @

@t
.X.t/�1/D�X.t/�1X 0.t/X.t/�1, we calculate

k�1t k0t DX.t/H
�1X.t/�1G�1

�
GX 0.t/HX.t/�1

�GX.t/HX.t/�1X 0.t/X.t/�1
�

DX.t/H�1JHX.t/�1�J

and

k�1t dkt DX.t/H
�1X.t/�1G�1

�
dGX.t/HX.t/�1CGX.t/dHX.t/�1

�
DX.t/H�1X.t/�1G�1dGX.t/HX.t/�1CX.t/H�1dHX.t/�1

which implies

.k�1t dkt /
2nDX.t/H�1

�
X.t/�1G�1dGX.t/C dHH�1

�2n
HX.t/�1

We will evaluate this expression by showing that

�
X.t/�1G�1dGX.t/C dHH�1

�2n
D .g�1dg/2n

�
cos2n.t/ 0

0 cos2n.t/

�
:

Indeed, one calculates that

X.t/�1G�1dGX.t/D g�1dg

�
cos2.t/ cos.t/sin.t/

cos.t/sin.t/ sin2.t/

�

and, since d.g�1/D�g�1dgg�1,

dHH�1 D g�1dg

�
0 0

0 �1

�
;

which gives

X.t/�1G�1dGX.t/C dHH�1 D .g�1dg/

�
cos2.t/ cos.t/sin.t/

cos.t/sin.t/ �cos2.t/

�
:
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Since �
cos2.t/ cos.t/sin.t/

cos.t/sin.t/ �cos2.t/

�2
D

�
cos2.t/ 0

0 cos2.t/

�

it follows that

�
X.t/�1G�1dGX.t/C dHH�1

�2n
D .g�1dg/2n

�
cos2n.t/ 0

0 cos2n.t/

�
:

Finally we have

Tr
�
k�1t k0t .k

�1dkt /
2n
�
D Tr

 �
X.t/H�1JHX.t/�1�J

�

�

	
X.t/H�1.g�1dg/2n

�
cos2n.t/ 0

0 cos2n.t/

�
HX.t/�1


!

D Tr
	
J.g�1dg/2n

�
cos2n.t/ 0

0 cos2n.t/

�


�Tr
	
HJH�1.g�1dg/2n

�
cos2n.t/ 0

0 cos2n.t/

�

;

where we have used the fact that trace is invariant and X�1.t/JX.t/D J . Since

HJH�1 D

�
0 g

�g�1 0

�
;

we obtain that

Tr
�
k�1t k0t .k

�1dkt /
2n
�
D Tr

	
.g�1dg/2n

�
0 cos2n.t/

�cos2n.t/ 0

�


�Tr
	
.g�1dg/2n

�
0 gcos2n.t/

�g�1cos2n.t/ 0

�

D 0

By Lemma 3.1 this shows thatCS.kt /D 0, which completes the proof of the lemma.

4. Differential extensions

In [BS2, Definition 2.1], Bunke and Schick give a definition for the “differential
extension” (formerly known as a “smooth extension”) of any generalized cohomol-
ogy theory. For the purposes of this paper, we will restrict the discussion to the



An elementary differential extension of odd K-theory 347

case of complex K-theory, for which case the data becomes Z2-graded (see remarks
following Definition 2.1 in [BS2]). Let ŒCh� W K0.M/! H even.M IR/ denote the
ordinary even Chern character, which is induced by the map ŒCh� W K0.M/ !

�even.M IR/=Im.d/ defined in Section 2.

Definition 4.1 A differential extension of K-theory is a contravariant functor OK
from the category of compact smooth manifolds (possibly with boundary) to the
category of Z2-graded abelian groups, together with natural transformations

1. R W OK�.M/!��
cl
.M IR/

2. I W OK�.M/!K�.M/

3. a W���1.M IR/=Im.d/! OK�.M/

such that

1. The following diagram commutes

K�.M/

ŒCh�

OK�.M/

I

R

H�.M/

��
cl
.M/

deRham

2. R ı aD d

3. The following sequence is exact

K��1.M/
ŒCh�

���1.M IR/=Im.d/
a OK�.M/

I
K�.M/

0
0

Several constructions have been given producing differential extensions of K-
theory, e.g. [HS], [BS], [FL]. Bunke and Schick clarify in [BS3, Section 3 Theorem
3.10] that the axioms above do not uniquely determine the differential extension
and illuminate the fundamental role played by an S1-integration map (which may
be regraded as the smooth analogue of a suspension isomorphism). Additionally,
one can ask for a compatible ring structure on a differential extension, referred in
[BS3] as a multiplicative structure, and in fact this structure implies the existence of
an S1-integration map. Moreover, such additional structure determines a differential
extensions of K-theory uniquely up to a unique natural isomorphism [BS3].
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Remark 4.2 Note that the data of a differential extension of K-theory splits into an
even and odd part, according to the domain of the functors OK�, R and I , and the
range of a. It therefore makes sense to refer to the even or odd part of a differential
extension, or equivalently to a differential extension of the even or odd part of K-
theory, and we will do so in what follows.

An elementary construction of the even part of a differential extension of K-
theory was given by [SS] by Simons and Sullivan, which is the Grothedieck group
of isomorphism classes of vector bundles with connection, up to the equivalence
relation of Chern-Simons exactness. While the language of differential extension
was not used in [SS], almost all of the data and conditions in Definition 4.1 are
apparent there, namely R is the even Chern character given by Equation (2.1) and
I is the forgetful map. The only map that is perhaps not explicit is the map a W
�odd.M IR/=Im.d/! OK0.M/. It may be defined as the composition

�odd.M IR/=Im.d/
� �

�odd.M IR/=Im.d/
�
=Im.Ch/ OK0.M/

where Ch W K�1.M/ ! �odd.M IR/=Im.d/ is the odd Chern character, � is the
projection map, and the last map is shown in [SS] to be an inclusion. It follows
immediately that sequence in Definition 4.1 is exact.

It follows from a theorem of Bunke and Schick ([BS2, Theorem 3.3]) that this
even part of a differential extension of K-theory, is naturally isomorphic to the even
part of any other differential extension. In particular, this is a construction of the ring
of even differential K-theory (which is unique via a unique natural isomorphism).

We emphasize some particularly nice properties of this extension. Firstly, the
geometric data used to construct this extension are rather small. In particular, it
may be relatively easier to build maps out of this differential extension. Secondly,
this differential extension admits a natural refinement, defined using a lifting of the
Chern Simons form to the free loop space of the manifold, [TWZ]. In the next
section we will construct the odd part of a differential extension of K-theory, from
the geometric data given by the smooth mapping space Map.M;U /.

5. The odd part of a differential extension

Recall that for a smooth manifold M , K�1.M/ may be defined as the set homotopy
classes of maps fromM to U . This defines a contravariant functor to abelian groups
under the operation of block sum. We now introduce an equivalence relation on the
setMap.M;U /which is finer than homotopy equivalence, and which will be shown
to define an abelian group OK�1.M/, giving the odd part of a differential extension
of K�1.
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Definition 5.1 For g0;g1 2Map.M;U / we say g0 	 g1 if there is gt WM �I ! U

such that CS.gt / is d -exact. This defines an equivalence relation, and we denote
the set of equivalence classes by OK�1.M/.

For a morphism f WM 0!M of smooth manifolds, we define f W OK�1.M/!
OK�1.M 0/ by f .Œg�/ D Œg ı f �, which is well defined since CS.gt ı f / D

f �.CS.gt //.

Note in particular that if g0 	 g1 then there is a gt so that the degree zero part
of CS.gt / is 0, so that Tr

R 1
0 .g

�1
t g0t /dt D 0.

Proposition 5.2 The block sum ˚ induces a well defined abelian group structure
on OK�1.M/.

Proof: If g0 	 g1 and h0 	 h1 then for some paths gt and ht we have CS.gt / and
CS.ht / are exact. Then g0˚h0 	 g1˚h1, since by Proposition 3.2, the path gt˚ht
satsfies

CS.gt ˚ht /D CS.gt /CCS.ht /;

which is exact.
The constant map to 1 2 U is an additive identity for the sum. Also, Lemma 3.6

shows that the equivalence class of g has an inverse, given by the equivalence class
of g�1. Finally, the product is abelian again by Lemma 3.6 since there is a path ft
from g˚h to h˚g such that CS.ft /D 0.

Proposition 5.3 There is a commutative diagram of group homomorphisms

K�1.M/

ŒCh�

OK�1.M/

I

RDCh

H odd.M/

�odd
cl
.M/

deRham

where I.Œg�/ equals the homotopy class of any representative g for Œg�. The maps R
and I are natural transformations of functors.

Proof: The map Ch W OK�1.M/ ! �odd
cl
.M/ given by Ch.Œg�/ D Ch.g/ is well

defined since for g0 	 g1 we have CS.gt / is exact for some gt so that Ch.g1/�
Ch.g0/ D dCS.gt / D 0. This is a group homomorphism, since Ch.g ˚ h/ D
Ch.g/CCh.h/, by Corollary 2.5.

The map I W OK�1.M/ ! K�1.M/ is the forgetful map which sends CS-
equivalence classes to the equivalence class determined by path components. This
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map is a group homomorphism since addition onK�1.M/may be defined by using
the block sum operation, as there is a path from g˚h to gh given by

f .t/D

�
g 0

0 1

�
X.t/

�
1 0

0 h

�
X.t/�1

where X.t/D
�

cos.t/ sin.t/
�sin.t/ cos.t/

�
is a map Œ0;�=2�! U.2n/ as in Lemma 3.6. It is

straightforward to check that the diagram commutes.
The remaining data of a differential extension consists of a natural transforma-

tion a, i.e. for each M a map

a W�even.M/=Im.d/! OK�1.M/

such that Ch ı aD d , and so that we obtain an exact sequence

K0.M/
ŒCh�

�even.M/=Im.d/
a OK�1.M/

I
K�1.M/ 0 :

Clearly I is surjective. In order to define a, it is sufficient to define an isomorphism

ˇ WKer.I /! .�even.M/=Im.d//=Im.ŒCh�/

for then we may let a be the composition of the projection � with ˇ�1,

a W�even.M/=Im.d/
�

.�even.M/=Im.d//=Im.ŒCh�/
ˇ�1

Ker.I /� OK�1.M/

and we have Ker.a/D Im.ŒCh�/ and Im.a/DKer.I /.
There is a natural candidate for this map ˇ, as follows. Suppose Œg� 2Ker.I /�

OK�1.M/. Then, for any g 2 Œg�, there is a (non-unique) gt WM � I ! U such that
g1 D g and g0 is the constant map M ! U to the identity of U , i.e.

Ker.I /D fŒg�jfor some g 2 Œg� there is a path gt such that g1 D g and g0 D 1g:

Define
ˇ.Œg�/D CS.gt / 2 .�even.M/=Im.d//=Im.ŒCh�/

where gt W M � I ! U is a choice of map satisfying g0 D 1 (the constant map to
the identity in U ), and g1 2 Œg�.

We first show this map ˇ is well defined. If g;h 2 Œg� are two such choices,
then there is a path kt such that k0 D g, k1 D h and CS.kt / is exact. Then for
any path gt from 1 to g, and path ht from 1 to h, we can consider the loop based
at the identity 1, defined by taking the composition of paths gt � kt � h�1t . By
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Proposition 3.2 and Theorem 3.5 we have that, modulo exactness, CS.gt � kt �
h�1t /D CS.gt /CCS.kt /�CS.ht / 2 Im.ŒCh�/. Since CS.kt / is exact, this shows
CS.gt / D CS.ht / 2 .�

even.M/=Im.d//=Im.ŒCh�/. This shows that ˇ does not
depend in the choice of g 2 Œg�.

It is clear that ˇ is a homomorphism, since ˇ.Œg˚h�/D CS.gt˚ht /D CS.gt /C
CS.ht /D ˇ.Œg�/Cˇ.Œh�/, and we now show ˇ is injective: If ˇ.Œg�/D 0 then

CS.gt /D Ch.r/C dZ

for some some path gt from 1 to g, some connection r, and some form Z. By
Theorem 3.5 there is loop ht such that CS.ht / D Ch.r/. Then kt D h�1t � gt W

M � I ! U satisfies k0 D 1, k1 D g, and CS.kt / D CS.gt / � Ch.r/ D dZ is
exact, so that Œg�D 0.

It therefore remains to show that ˇ is surjective. We reduce the statement as
follows.

Lemma 5.4 The map

ˇ WKer.I /! .�even.M IR/=Im.d//=Im.ŒCh�/

is surjective if and only if the following two statements both hold:

1. Every exact odd form dZ on M is given by dZ D Ch.g/ for some g 2
Mapo.M;U / in the connected component of the identity 1.

2. For all X 2
�
�even
cl
.M IR/=Im.d/

�
=Im.ŒCh�/ there is some gt WM � I ! U

satisfying g0 D 1 and

X D CS.gt / 2 .�
even.M IR/=Im.d//=Im.ŒCh�/

Proof: The second statement clearly follows from the surjectivity of ˇ. For the
first statement, if Y is an exact odd form, choose Z so that Y D dZ and let ŒZ� 2
.�even.M IR/=Im.d//=Im.ŒCh�/ be the image of Z under the quotient map. Then
by assumption we can write

ŒZ�D CS.gt / 2 .�
even.M/=Im.d//=Im.ŒCh�/

for some gt WM �I ! U such that g0 D 1. Since exterior derivative is well defined
on .�even.M IR/=Im.d//=Im.ŒCh�/ and independent of choice of representatives,
we have

Y D dZ D dCS.gt /D Ch.g1/�Ch.g0/D Ch.g1/;

and g1 is in the connected component of the identity.
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Conversely, suppose X 2 .�even.M/=Im.d//=Im.ŒCh�/. Then
dX 2 �odd.M IR/ is well defined and, by the first assumption, we may write
dX D Ch.g/ D dCS.gt / where gt is any choice of path from the identity
to the given g 2 Mapo.M;U /. So, X � CS.gt / is a closed even form. Let
ŒX �CS.gt /� 2

�
�even
cl
.M/=Im.d/

�
=Im.ŒCh�/ be the image of X �CS.gt / under

the quotient map. Then, by the second assumption,

ŒX �CS.gt /�D CS.ht / 2 .�
even.M/=Im.d//=Im.ŒCh�/

for some ht satisfying h0 D 1.
Therefore, X D CS.gt ˚ ht / 2 .�even.M/=Im.d//=Im.ŒCh�/, so that ˇ.Œg1˚

h1�/DX , and gt ˚ht satisfies g0˚h0 D 1, so Œg1˚h1� 2Ker.I /.
The first condition in Lemma 5.4 follows from Corollary 2.7. We now show that

condition (2) holds.

Lemma 5.5 Every closed real valued even differential form on M equals, modulo
exact forms, CS.gt / for some path gt satisfying g0 D 1.

Proof: Since the Chern character map Ch W K0.M/! H even.M IR/ becomes an
isomorphism after tensoring with R, we can find some bundles with connection
.E1;r1/;:::;.Er ;rr/, such that the forms fCh.rj /gjD1:::r give a basis for all of
H even.M IR/. Given these r1;:::;rr , we can use the path gjt D e2�iPj t for each
j , where Pj is a suitable choice of a projection operator associated to rj as in the
proof of Theorem 3.5. Restricting any gjt to an interval Œ0;s� � Œ0;1�, we see from
Lemma 3.1 and Equations (3.2) and (3.3) in the proof of Theorem 3.5, that

CS

	
g
j
t

ˇ̌̌
Œ0;s�



DTr

X
n�0

.�1/n

.2�i/nC1
nŠ

.2n/Š

Z s

0

..g
j
t /
�1.g

j
t /
0/ � ..g

j
t /
�1d.g

j
t //

2ndt

DTr
X
n�0

.�1/n

.2�i/nC1
nŠ

.2n/Š

	
2�i.�4/n

Z s

0

sin2n.�t/dt


Pj .dPj /

2n

D
X
n�0

R s
0

sin2n.�t/dtR 1
0 sin2n.�t/dt

�Ch.rj /
.2n/

whereCh.rj /.2n/ denotes the degree 2n part ofCh.rj /. Using that
R 1
0 sin2n.�t/dt D

1
4n

�
2n
n

�
, we denote by f2n.s/D 4n

.2nn /
�
R s
0 sin2n.�t/dt , so that

CS

	
g
j
t

ˇ̌̌
Œ0;s�



D
X
n

f2n.s/ �Ch.rj /
.2n/:

We note that the various degrees scale differently. Nevertheless, using this fact
above, it is fairly straightforward to show using only algebra that any rational linear
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combination of Chern forms can be written, modulo exact, as CS.gt / for some path
gt . But, to obtain all real linear combinations of Chern forms, it seems we must give
an analytic argument, which we do now.

Each component Ch.rj /.2n/ is a closed form, so that it can be written in terms
of the generating set

Ch.rj /
.2n/ D

rX
`D1

b
n;`
j Ch.r`/ modulo exact forms (5.1)

for some real numbers bn;`j . We may take the block sum of all the gjt restricted to
Œ0;sj �, by extending each to be constant on Œsj ;1�, respectively, and then the Chern-
Simons form of this is given by

rX
jD1

CS

	
g
j
t

ˇ̌̌
Œ0;sj �



D

rX
jD1

X
n

rX
`D1

f2n.sj /b
n;`
j Ch.r`/

D

rX
`D1

0
@ rX
jD1

F `j .sj /

1
ACh.r`/;

where we have set F `j .s/ D
P
nb
n;`
j f2n.s/. In order to show that we can obtain

any real linear combination of Chern forms from the above expression, e.g.
P
j cj �

Ch.rj / for some constants cj , we need to solve the following system of r equations
in the r variables s1;:::;sr :

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

c1 D
rP
jD0

F 1j .sj /

:::
:::

cr D
rP
jD0

F rj .sj /

Let G W Rr ! Rr be given by .s1;:::;sr/ 7! .
Pr
jD0F

`
j .sj //`. By the inverse func-

tion theorem, it suffices to prove that the matrixM D dG D
�
@
@sj
.
Pr
jD0F

`
j .sj //

�
`;j

has a non-zero determinant for some s1;:::;sr . Then there is a neighborhood on
which the functionG is invertible, so we may obtain any closed form

P
j cj �Ch.rj /

for .c1;:::;cr/ in a small cube contained in I1�����Ir . Then, using block sums and
inverses, with CS.gt ˚ht /D CS.gt /CCS.ht / and CS.g�1t /D�CS.gt /, we may
obtain any linear combination

P
j cj �Ch.rj / for .c1;:::;cr/ 2 Rr as some CS.gt /

(modulo exact forms).
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Note that

@

@sj

� rX
jD0

F `j .sj /
�
D

d

dsj
F `j .sj /D

X
n

b
n;`
j �

4n�
2n
n

� � sin2n.�sj /

so that

M D

 X
n

b
n;`
j �

4n�
2n
n

� � sin2n.�sj /

!
`;j

Let Bn D .b
n;`
j /`;j for 0 
 n 
 d . From the definition of bn;`j , we see by

summing (5.1) over all n that Ch.rj /D
Pr
`D1

P
nb
n;`
j Ch.r`/, so that

B0C ���CBd D Id

Taking determinant and using multi-linearlity we have
X

0�i1;:::;ir�n

X
�2Sr

sgn.�/ � bi1;�.1/1 ���bir ;�.r/r D 1

This shows that not all of the summands
�P

�2Sr
sgn.�/ � bi1;�.1/1 ���b

ir ;�.r/
r

�
are

zero. On the other hand,
M D C0C ���CCd

where

Cn D
4n�
2n
n

� �Bn �
0
B@

sin2n.�s1/
: : :

sin2n.�sr/

1
CA

so that

det.M/D
X

1�i1;:::;ir�n

X
�2Sr

sgn.�/ � bi1;�.1/1 ���bir ;�.r/r

 
rY
kD1

4ik�
2ik
ik

� � sin2ik .�sk/

!
:

The collection of products of sine functions appearing as the summands above are
linearly independent over R. Since at least one coefficient�P

�2Sr
sgn.�/ � bi1;�.1/1 ���b

ir ;�.r/
r

�
is non-zero, this shows the determinant is non-

zero for some s1;:::;sr . This completes the proof.

Corollary 5.6 The map

ˇ WKer.I /!�even.M/=.Im.ŒCh�/C Im.d//

is surjective.
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Proof: The two conditions in Lemma 5.4 follow from Corollary 2.7 and Lemma 5.5,
respectively.

Finally, having shown ˇ is invertible, we may define a D ˇ�1 ı� as explained
above, giving us the desired exact sequence

K0.M/
ŒCh�

�even.M/=Im.d/
a OK�1.M/

I
K�1.M/ 0:

Theorem 5.7 The functor M 7! OK�1.M/, together with the maps R D Ch;I , and
a above, define a differential extension of odd K-theory.

Proof: It only remains to show that R ı a D d . For a given form X 2

�even.M/=Im.d/, we have �.X/ D ˇ.Œg1�/ D CS.gt / for some path gt starting at
g0 D 1. Then Ch.a.X//D Ch.Œg1�/D Ch.g1/D Ch.g1/�Ch.g0/D dCS.gt /D
dX , as d�.X/D dX is well-defined since d.Im.ŒCh�//D 0.

We close this section with a slightly stronger result than was needed here. It will
be used in the appendix.

Corollary 5.8 Let Mapo.M � I;U /D fgt WM � I ! U jg0 D 1g. The map

CS WMapo.M � I;U /!�even.M/=.Im.d//

is surjective.

Proof: Given ŒX� 2 �even.M/=.Im.d// we know by Corollary 5.6 that X D
ˇ.Œg�/ D CS.gt / modulo Im.Ch/C Im.d/ for some gt 2 Mapo.M � I;U /. In
other words, we have X D CS.gt / C Ch.r/ modulo exact forms. But Ch.r/
is closed, and so by Theorem 3.5 we may write Ch.r/ D CS.ht / for some
ht 2Map

o.M �S1;U / �Mapo.M � I;U /. Therefore, X D CS.gt /CCS.ht /D
CS.gt ˚ ht / modulo exact forms is in the image of CS jMapo.M�I;U /, as claimed.

6. Calculation for a point

One can calculate directly from the exact sequence property (3) in definition 4.1
that the odd differential extension of a point is OK�1.pt/Š S1 DR=Z. In this short
section we give an alternative straightward calculation of this result, that illuminates
the meaning of CS-equivalence in this context, which could also be useful in other
examples.

Lemma 6.1 Conjugate elements of U are CS-equivalent in Map.pt;U /. In
particular, after diagonalization, every element of OK�1.pt/ is represented by a
diagonal matrix.
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Moreover, if D is diagonal then D is CS-equivalent to the one by one matrix
given by Œdet.D/�.

Proof: Let A 2 U . For any P 2 U we may choose a path Pt such that P0 D 1 and
P1 D P . Then gt D PtAP

�1
t is a path from A to PAP�1. We calculate CS.gt /,

which in this case is a function (since we are over a point M D pt),

CS.gt /D
1

2�i
Tr
	Z 1

0

g�1t g0tdt




D
1

2�i
Tr
	Z 1

0

PtA
�1P�1t

�
P 0tAP

�1
t �PtAP

�1
t P 0tP

�1
t

�
dt




D
1

2�i
Tr
	Z 1

0

P�1t P 0t �P
0
tP
�1
t dt




D 0:

For the second statement, by induction it suffices to show that if D is two by
two and diagonal, with entries g and h, then D 	 Œgh�, where Œgh� is a one by one
matrix. Consider

gt DGX.t/HX.t/
�1

where

X.t/D

�
cos.t/ sin.t/
�sin.t/ cos.t/

�
G D

�
g 0

0 1

�
H D

�
1 0

0 h

�

so that g0 DD and g�=2 D Œgh�. For this path we have CS.gt /D 0 since

Tr
	
XH�1X�1G�1

�
GX 0HX�1�GXHX�1X 0X�1

�


D Tr
�
X�1X 0�X 0X�1

�
D 0:

This completes the proof of the lemma.

Proposition 6.2 The function det W OK�1.pt/ ! S1 is a well defined group
isomorphism.

Proof: IfA;B 2 U andA	 B then by the above Lemma 6.1, Œdet.A/�	 Œdet.B/�.
So the determinant function is well defined if we show Œe2�i�0 � 	 Œe2�i�1 � implies
e2�i�0 D e2�i�1 , where 	0;	1 2 Œ0;1/. If Œe2�i�0 � 	 Œe2�i�1 � then there exists a path
gt from e2�i�0 to e2�i�1 so that CS.gt / is exact, and, since the Chern-Simons form
is an exact degree zero form on a point, we have CS.gt / D 0. By Proposition 3.4
we may replace gt by any homotopic path, so that we may assume that gt is the
particular path

gt D e
2�i.t�1C.1�t/�0/C2�int
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for some integer n. We calculate

0D CS.gt /D
1

2�i
Tr
	Z 1

0

g�1t g0t



dt D 	1� 	0Cn;

so that indeed e2�i�0 D e2�i�1 .
The determinant function is clearly surjective, and it is injective since if

det.A/ D 1 then A 	 Œdet.A/� D Œ1� so that A represents the identity. Finally,
the function is a group homomorphism since det.A˚B/D det.A/det.B/.

A. Alternative formulation

In this appendix, we give an alternative definition of the odd differential extension
from Section 5, which a prior is defined via a larger generating set, but in fact turns
out to be naturally equivalent to the differential extension OK�1.M/ from Section 5.
This construction is closely related to the one given by Freed and Lott in [FL].

For any compact manifold M one can always include the additional data of an
even differential form, making the following definition:

S.M/D f.g;X/jg 2Map.M;U /;X 2�even.M IR/g

This set is a monoid under the operation .g;X/C .h;Y / D .g ˚ h;X C Y / with
identity given by .1;0/ where 1 is the constant map to the identity 1 2 U . We define
an equivalence relation 	 on S.M/ by declaring

.g0;X0/	 .g1;X1/

if and only if, there is a path gt from g0 to g1 such that:

CS.gt /�X1�X0mod exact forms

The relation	 defines an equivalence relation, and we denote the set of equivalence
classes by OL�1.M/ D S.M/= 	 , and we denote the equivalence class of a pair
.g;X/ by Œg;X�. It follows from Lemma 3.6, just as in the proof of Proposition
5.2, that the equivalence classes form an abelian group under the sum operation
described above.

Furthermore, for a morphism f W M 0 ! M of smooth manifolds, we define
f .Œg;X�/ D Œg ı f;f �.X/� as the pullback of each component, so in this way OL�1

defines a contravariant functor.
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There is a commutative diagram of group homomorphisms

K�1.M/

ŒCh�

OL�1.M/

J

S

H odd.M IR/

�odd
cl
.M IR/

deRham

which is natural in M , where K�1.M/ is set of homotopy classes of elements of
Map.M;U /, J.Œg;X�/ is the homotopy class of g, and S.Œg;X�/D Ch.g/C dX .

For this construction of OL�1.M/, an equivalence class Œg;X� has the additional
data of an even differential form, so it is straightforward to define

b W�even.M/=Im.d/! OL�1.M/

by
b.X/D Œ1;X�

where 1 2Map.M;U / is the constant map to 1 2 U .
The map b is well defined since the Chern-Simons form associated to the

constant path at 1 2 U is zero. It is straightforward to see that b is a group
homomorphism. Furthermore, we have S ı b D d since S.b.ŒX�// D S.Œ1;X�/ D

Ch.1/C dX D dX . Finally, we have:

Proposition A.1 There is an exact sequence

K0.M/
ŒCh�

�even.M/=Im.d/
b OL�1.M/

J
K�1.M/ 0

where Ch WK0.M/!�even.M/=Im.d/ is the ordinary even Chern character map.

Proof: We first show that Im.b/DKer.J /. We have

Ker.J /D fŒg;X�jthere is a path gt such that g.0/D g and g.1/D 1g

while
Im.b/D fŒ1;X�jX 2�even.M IR/g

So, certainly Im.b/ � Ker.J /. Conversely, if Œg;X� 2 Ker.J /, and gt is a path
such that g.1/ D 1 and g.0/ D g, let Y D CS.gt /CX . Then .g;X/ 	 .1;Y / since
Y �X D CS.gt /. This shows Œg;X� 2 Im.b/ and therefore Ker.J /� Im.b/.
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Finally, we show that Im.ŒCh�/DKer.b/. First, note that

Ker.b/D fX jX D CS.gt /mod exact forms, for some loop gt based at 1g;

since .1;X/ 	 .1;0/ if and only if there is a path gt such that g.0/ D g.1/ D 1 and
X D CS.gt / mod exact forms. So it suffices to show that the set of even Chern
forms equals the set of differential forms of the form CS.gt / for some loop based
at 1 (modulo exact forms). This follows from Theorem 3.5.

We now compare the differential extension OK�1 from Section 5 with OL�1 from
this section. We use the natural notion of equivalence, i.e. a natural isomorphism of
functors OK�1! OL�1 that commutes with additional data .R;I;a/ and .S;J;b/, see
[BS3, Definition 1.2].

Proposition A.2 The natural isomorphism ˆ W OK�1 ! OL�1 given by Œg� 7! Œg;0�,
where g W M ! U , is a natural equivalence from the differential extensions
. OK�1;R;I;a/ to the differential extension . OL�1;S;J;b/.

Proof: This map is easily seen to be well defined, injective and a natural
homomorphism.

The map ˆ is surjective if and only if every .g;X/ is equivalent to some .h;0/,
i.e. for every map g W M ! U and every even form X there is a path gt such
that g0 D g, g1 D h, and CS.gt / D X modulo exact. By Corollary 5.8 there is
kt W M � I ! U so that k0 D 1 and CS.kt / D X modulo exact forms, so for
gt D g˚ kt , we have g0 D g and

CS.gt /D CS.g/CCS.kt /D CS.kt /DX mod exact forms:

That is, .g;X/ is equivalent to .g˚ k1;0/, so indeed the natural map is surjective,
and ˆ W OK�1.M/! OL�1.M/ is an isomorphism for each M .

It is immediate to check that J ıˆ D I and S ıˆ D R. Finally, we show that
for ŒX� 2 �even=Im.d/, ˆ ı a.ŒX�/ equals b.ŒX�/ D Œ1;X� in OL�1.M/. Recall that
a.ŒX�/ 2 OK�1.M/ is defined as Œg1� for any choice gt with g0 D 1 and CS.gt / D
ŒX� modulo Im.Ch/. By Corollary 5.8 we may choose gt so that CS.gt / D X 2
�even.M/ modulo exact forms. Then, for this choice gt , we have ˆ ı a.ŒX�/ D
ˆ.Œg1�/ D Œg1;0� D Œ1;X� D b.ŒX�/. This completes the proof of the proposition.
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