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Abstract: We study the higher Hochschild functor, factorization algebras and their re-
lationship with topological chiral homology. To this end, we emphasize that the higher
Hochschild complex is a functor sSet∞×C DG A∞ where sSet∞ and C DG A∞ are the
(∞, 1)-categories of simplicial sets and commutative differential graded algebras, and
give an axiomatic characterization of this functor. From the axioms, we deduce several
properties and computational tools for this functor. We study the relationship between
the higher Hochschild functor and factorization algebras by showing that, in good cases,
the Hochschild functor determines a constant commutative factorization algebra. Con-
versely, every constant commutative factorization algebra is naturally equivalent to a
Hochschild chain factorization algebra. Similarly, we study the relationship between the
above concepts and topological chiral homology. In particular, we show that on their
common domains of definition, the higher Hochschild functor is naturally equivalent
to topological chiral homology. Finally, we prove that topological chiral homology de-
termines a locally constant factorization algebra and, further, that this functor induces
an equivalence between locally constant factorization algebras on a manifold and (local
system of) En-algebras.
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1. Introduction

In this paper, we study the higher Hochschild chain1 complex C H•X•(A), functorially
assigned to a simplicial set X• (or a topological space), and a commutative differential
graded algebra (CDGA) A, from an axiomatic point of view. Recently, motivated by
topological quantum field theories, several concepts integrating (higher) categories of
spaces or manifolds with those of algebras of different types have arisen. We also study
the relationship between higher Hochschild chains, factorization algebras [8,9] and topo-
logical chiral homology [24,25]. Higher Hochschild homology was first introduced by
Pirashvili in [28]. The higher Hochschild complexes (as well as other aforementioned
concepts) are a generalization of the classical Hochschild complex. In fact, for the case
of the standard simplicial set model X• = S1• for the circle, C H•

S1•
(A) reduces to the

standard Hochschild complex C H•(A) = A⊗•+1, see [17,18].
In contrast with most other generalizations, higher Hochschild chains are defined over

any (simplicial set model of a) space and not only (stratified) manifolds. However, this
forces us to restrict our attention to CDGAs or at best to E∞-algebras. More precisely,
the higher Hochschild chains form a bifunctor C H : sSet × C DG A → C DG A from
the categories of simplicial sets and differential graded commutative algebras to the latter
category. The functoriality with respect to spaces (and not merely manifold embeddings)
is a key feature which allows us to derive algebraic operations on the higher Hochschild
chain complexes from maps of topological spaces. For instance, it was crucially used to
study the Hodge decomposition of Hochschild homology (Pirashvili [28], also see [26] in
the topological context) or to give and study models of (higher) string topology [13,14].
Also, its underlying combinatorial properties allow a generalization of Chen’s iterated
integral [14]. Higher Hochschild is also a convenient setting to study holonomy of
(higher) gerbes (for instance see [33]) or compute the observables of classical topological
field theories, see [8] and Sect. 4.2. The higher Hochschild homology satisfies many
axioms similar to those of Eilenberg–Steenrod for singular homology: naturality in each
variable, commutations with coproducts in both variables, homotopy invariance and the
dimension axiom, see Corollary 2.

However, to fully appreciate the higher Hochschild functor, one needs to go beyond
mere homology and consider the higher Hochschild chains in a derived setting, which
allows one to formulate the analogue of the excision axiom. This axiom, reminiscent

1 Note, that in this paper we are using a cohomological grading for our differential graded modules, see
Convention (7) on page 7. Also, this paper only deals with Hochschild chains and Hochschild homology, and
never with Hochschild cochains or Hochschild cohomology.
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of the locality axioms of topological field theories, asserts that Hochschild chains map
the homotopy pushout of simplicial sets to the derived tensor product of algebras, i.e.
homotopy pushout of CDGAs. This gluing property together with the homotopy in-
variance allow one to build many examples of Hochschild chain complexes and to do
computations as demonstrated in [14]. Further, such an enhancement is needed in order
to correctly compare the higher Hochschild functor with more sophisticated concepts,
such as topological chiral homology, which naturally lies in a homotopical setting. More
precisely, we interpret the higher Hochschild chains as a (derived) bifunctor from the
(∞, 1)-categories sSet∞ of simplicial sets and C DG A∞ of CDGAs, which are suitable
localizations of the categories of simplicial sets and CDGAs, with respect to (weak)
homotopy equivalences and quasi-isomorphisms. This framework (instead of simply
homology) is also needed to keep track of the topology of topological spaces modeled
by the simplicial sets; for instance the usual Hochschild complex C H∗(A) interpreted in
an (∞, 1)-category retains a circle action governing cylic homology as shown in [25,32].
Here, following Rezk and Lurie [25,29], an (∞, 1)-category means a complete Segal
space. In our context, the (∞, 1)-categories we considered are obtained by a Dwyer–
Kan localization process from standard model categories, though the results of this
paper should not depend on the particular chosen approach to (∞, 1)-categories, see
also Remark 1.

Our first main result is the following theorem.

Theorem 1. The Hochschild chains lift as a functor of (∞, 1)-categories C H : sSet∞×
C DG A∞ → C DG A∞ which satisfies the following axioms

1. value on a point: there is a natural equivalence of CDGAs C H•pt (A) ∼= A.
2. monoidal: there are natural equivalences of CDGAs

C H•∐ Xi•(A)
∼=

⊗
C H•Xi•(A)

3. homotopy gluing/pushout: C H sends homotopy pushout in sSet∞ to homotopy
pushout in C DG A∞, i.e. there is a natural equivalence of CDGAs

C H•
X•∪h

Z•Y•(A)
∼= C H•X•(A)⊗L

C H•Z• (A)
C H•Y•(A).

Furthermore, the above axioms actually define the (derived) higher Hochschild chains:
indeed our second main result, Theorem 2 can be rephrased as

Theorem 2. The Hochschild chains is the unique bifunctor sSet∞ × C DG A∞ →
C DG A∞ satisfying the axioms (1), (2), (3) in Theorem 1.

These two results actually follow from the fact that C DG A is tensored over simplicial
sets and the general formalism of (∞, 1)-categories as in [22,24] and allow one to
interpret the Hochschild functor as a (derived) mapping stack in the context of [30],
see Corollary 15. We also show that the derived Hochschild functor C H : sSet∞ ×
C DG A∞ → C DG A∞ has many good formal properties: for instance it commutes
with finite (homotopy) colimits in both arguments and with finite products of simplicial
spaces (Corollary 5 and Proposition 5). Further, the locality axioms lead to an Eilenberg–
Moore spectral sequence computing the higher Hochschild homology (Corollary 3).

We also deal with the pointed versions of higher Hochschild chains, which allows
one to define Hochschild chains over a pointed simplicial set X• of a CDGA A with
coefficient in an A-module M and establish similar results for this theory.
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By homotopy invariance, we can define C H•X (A) for a topological space X , gener-
alizing the concept for a simplicial set X•, in such a way that all of the above properties
still hold. With this, we can now offer interpretations of C H•X (A) in various contexts.
First, in Sect. 4, we use these properties to give an interpretation of Hochschild chains
over spaces of a CDGA A as a factorization algebra in any dimension. The concept of
factorization algebras (see [8,9]) is inspired by Topological Quantum Field Theory, in
which they appear naturally to encode observables. They were inspired by the work of
Beilinson and Drinfeld [3] (in an algebraic-geometry framework). Roughly speaking a
factorization algebra F is a rule which (covariantly) associates cochain complexes to
open subsets of a space X together with multiplications

F(U1)⊗ · · · ⊗ F(Un)→ F(V )

for any family of pairwise disjoint open subsets of an open set V in X . It should satisfy
a “cosheaf-like” condition, meaning that F(V ) can be computed by Čech complexes
indexed on nice enough covers, called factorizing covers, see [8] and Sect. 4.2. The
(derived) global sections of a factorization algebra F is also called the factorization
homology of F and is denoted H F(F , X).

In this context we prove that the higher Hochschild chain functor defines a com-
mutative factorization algebra CHX (A), if X admits a good cover whose factorization
homology is precisely the derived Hochschild chains C H•X (A).

Theorem 4. Let X be a topological space with a factorizing good cover and A be a
CDGA. Assume further that there is a basis of open sets in X which is also a factorizing
good cover. Then the assignment CHX : U �→ C H•U (A) is a factorization algebra
on X.

In particular, this applies when X is a manifold. Further, we prove that any factorization
algebra for which F(U ) (for contractible U ) is naturally equivalent to a CDGA A is
canonically equivalent to CHX (A).

Corollary 10. Let X be a topological space with a sufficiently nice cover, let A be a
CDGA, and let F be a strongly constant factorization algebra on X of type A. Then
there is a natural equivalence of factorization algebras F ∼= CHX (A).
In particular, there is a natural equivalence H F(F) ∼= C H•X (A) in k-Mod∞.

In Sect. 5, we establish a relationship between the topological chiral homology func-
tor defined by Lurie [24,25] and both the higher Hochschild functor and factorization
algebras. To obtain a comparison between these functors, it is important to note that
they are defined in two different settings with a common intersection. Topological chiral
homology, denoted

∫
M A, is defined for any En-algebra A (where En is an operad equiv-

alent to the little cubes in dimension n) and an m-dimensional manifold M, m ≤ n, such
that M × Dn−m is framed (we say M is n-framed). Further

∫
M A is an En−m-algebra

which is also a module over the En−m+1-algebra
∫
∂M A. Topological chiral homology

can be interpreted as an invariant of framed manifolds produced by an extended (∞, n)-
Topological Field Theory in the sense of [25]; the theory in question takes values in
an (∞, n)-category of En-algebras whose n-morphisms are (homotopy types) of chain
complexes. Note that topological chiral homology depends on and comes with a choice
of a sequence of maps of operads,

E1
� � �� E2

� � �� . . . . . . �
� �� En

� � �� . . . . . . �� �� Com
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which allows one to interpret a CDGA as an En-algebra for any n. When A is a CDGA,
things simplify greatly, and we can give a simple description of

∫
M A in terms of the

higher Hochschild complex of A. Using excision for topological chiral homology, see
Proposition 11, we prove, in a rather geometric way:

Theorem 5. Let M be a manifold endowed with a framing of M × Dk and A be a
differential graded commutative algebra viewed as an Em+k-algebra. Then topological
chiral homology of M with coefficients in A, denoted by

∫
M A is equivalent to C H•M (A)

viewed as an Ek-algebra.

In other words, topological chiral homology and higher Hochschild chains coincide
on their common intersection for an n-framed manifold M , and a CDGA A. As an
immediate corollary, in that case,

∫
M A is independent of the n-framing, see Sect. 5.4.

The relation between factorization algebras, derived higher Hochschild chains, and
topological chiral homology for CDGAs can be pushed further. Indeed, the data of an
En-algebra are equivalent to those of a locally constant factorization algebra in R

n [9,24],
see Proposition 10. Further, the assumptions of having an En-algebra and a framed
manifold to define topological chiral homology can be replaced by the one of having
a suitable (kind of) cosheaf of En-algebras on an n-dimensional manifold N . Such
a cosheaf is called an E

⊗
N -algebra [24] and is also inspired by the work of Beilinson-

Drinfeld [3]. The techniques developed to compare Hochschild chains with factorization
algebras and topological chiral homology leads to Theorem 6 which can be rephrased
as

Theorem 6. Let M be a manifold of dimension n.

1. Topological chiral homology defines a natural (∞, 1)-functor T CM from the category
of E

⊗
M×Rd -algebras to the category of locally constant factorization algebras on M

with value in Ed-algebras, such that
∫

M A ∼= H F(T CM ,M).
2. The functor T CM (A) is an equivalence.

Let us outline the philosophy intertwining the different concepts studied here. Given
an n-framed manifold M of dimension m (i.e. M × R

n−m is framed), and an En-
algebra A, we can form the topological chiral homology

∫
M A (or equivalently consider

factorization algebra homology), which can be thought of as a colimit of tensor products
of A indexed by balls in the manifold. Now, if we embed M × R

n−m in M × R
n−m+1

equipped with the induced framing, one can form
∫

M B for an En+1-algebra. But two
different framings of M × R

n−m may become equivalent after the embedding. Since a
CDGA C is an Ek-algebra (as well as an E

⊗
M -algebra) for all k,

∫
M C should not be able to

distinguish different framings. Since manifolds embed in euclidean spaces, we further see
that

∫
M C should makes sense for any manifold. Note that constant factorization algebra

can be pulled back along open immersions and pushed forward any map. This hints that
any deformation retract of a manifold should also have a well defined topological chiral
homology (with value in a C) equivalent to the one of the manifold. All of this suggests
that, for CDGAs, topological chiral homology may be extended to any CW-complex and
is a homotopy invariant, which is precisely realized by the derived higher Hochschild
functor. Said otherwise, higher Hochschild is the “limit” for n going to∞ of topological
chiral homology defined as an invariant of manifolds of dimension n.

One of the emerging patterns here is that there is a balance to keep between the mani-
folds and the algebraic structure needed to produce a (derived) invariant. For instance, in
order to consider En-algebras, one needs to consider only at most n-dimensional mani-
folds (possibly with extra structure such as a framing). In particular, working with only
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associative algebras restricts attention to manifolds of dimension 1. At the opposite side
of the spectrum, restricting to CDGAs allows one to build and study explicit examples
in a much easier way and to compute them when adding the usual Rational Homotopy
techniques to the axiomatic properties satisfied by the theory.

We choose to work with commutative differential graded algebras since we are mainly
interested in the characteristic zero case. However, it is also possible to work with
simplicial commutative algebras, and all of our results should make sense in this setting.
Simplicial commutative algebras are better behaved if one wants to deal with positive
characteristic.

2. Preliminary Definitions and Notation

In this section we recall some standard definitions and constructions.
Conventions:

1. We fix a ground field k of characteristic zero. The (∞, 1)-category of differential
graded k-modules (i.e. complexes) will be denoted k-Mod∞.

2. The (naïve) categories of simplicial sets and of commutative differential graded alge-
bras will be respectively denoted by sSet and C DG A. The category of commutative
graded algebra will be denoted CG A. Unless otherwise stated, all algebras will be
assumed to be unital.

3. We will simply refer to commutative differential graded algebras as CDGAs.
4. The (∞, 1)-categories of simplicial sets and commutative differential graded algebras

will be respectively denoted by sSet∞ and C DG A∞.
5. Let n ≥ 1 be an integer. By an En-algebra we mean an algebra over an En-operad.

Unless otherwise stated, we work in the context of operads of differential graded k-
modules or∞-operads in k-Mod∞. We will write En-Alg∞ for the (∞, 1)-category
of En-algebras.

6. We work with a cohomological grading (unless otherwise stated) for all our
(co)homology groups and graded spaces, even when we use subscripts to denote the
grading. In particular, all differentials are of degree +1, of the form d : Ai → Ai+1

and the homology groups Hi (X) of a space X are concentrated in non-positive degree.
7. We will denote by C Hn

X•(A) the Hochschild chain complex over X• with value in
A of total degree n. This Hochschild chain complex was noted differently in the
papers [13,14]. We choose this notation in order to put emphasis on the covariance
of the Hochschild chain functor with respect to X• and the fact that we are considering
cohomological degree.

2.1. Simplicial sets. Denote by� the category whose objects are the ordered sets [k] =
{0, 1, . . . , k}, and morphisms f : [k] → [l] are non-decreasing maps f (i) ≥ f ( j) for
i > j . In particular, we have the morphisms δi : [k− 1] → [k], i = 0, . . . , k, which are
injections that miss i and we have surjections σ j : [k + 1] → [k], i = 0, . . . , k, which
send j and j + 1 to j .

A simplicial set is by definition a contravariant functor from� to the category of sets
Sets or written as a formula, Y• : �op → Sets. Denote by Yk = Y•([k]), and call its
elements simplices. The image of δi under Y• is denoted by di := Y•(δi ) : Yk → Yk−1,
for i = 0, . . . , k, and is called the i th face. Similarly, si := Y•(σi ) : Yk → Yk+1,
for i = 0, . . . , k, is called the i th degeneracy. An element in Yk is called a degenerate
simplex, if it is in the image of some si , otherwise it is called non-degenerate.
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A simplicial set is said to be finite if Yk is finite for every object [k] ∈ �. A pointed
simplicial set is a contravariant functor into the category Sets∗ of pointed finite sets,
Y• : �op → Sets∗. In particular, each Yk = Y•([k]) has a preferred element called the
basepoint, and all differentials di and degeneracies si preserve this basepoint.

A morphism of (finite or not, pointed or not) simplicial sets is a natural transformation
of functors f• : X• → Y•. Thus f• is given by a sequence of maps fk : Xk → Yk
(preserving the basepoint in the pointed case), which commute with the faces fkdi =
di fk+1, and degeneracies fk+1si = si fk for all k ≥ 0 and i = 0, . . . , k.

One of the most important construction for us is the pushout.

Definition 1. Let X•,Y•, and Z• be simplicial sets, and let f• : Z• → X• and g• : Z• →
Y• be maps of simplicial sets. We define the wedge W• = X•∪Z•Y• of X• and Y• along Z•
as the simplicial space given by Wk = (Xk ∪ Yk)/ ∼, where ∼ identifies fk(z) = gk(z)
for all z ∈ Zk. The face maps are defined as dW•

i (x) = d X•
i (x), dW•

i (y) = dY•
i (y)

and the degeneracies are sW•
i (x) = s X•

i (x), sW•
i (y) = sY•

i (y) for any x ∈ Xk ↪→ Wk
and y ∈ Yk ↪→ Wk. It is clear that W• is well-defined and there are simplicial maps

X•
i•→ W• and Y•

j•→ W•.
If X• is a pointed simplicial set, then we can make W• into a pointed simplicial set

by declaring the basepoint to be the one induced from the inclusion X• → W•. (Note
that this is in particular the case, when X•,Y•, Z•, f• and g• are in the pointed setting.)

2.2. Commutative differential graded algebras. We let C DG A be the category of com-
mutative differential graded algebras (over the characteristic zero field k). We do not
assume the underlying chain complexes of our algebras to be bounded, since in practice,
it happens that one has to consider the Hochschild chains of de Rham forms on a space,
which is generally Z-graded. We follow the approach of [30, Chapter 1.1] and [16] for the
model category properties of C DG A and modules over CDGAs. Recall from [19, Sec-
tion 2.3], that there is a standard cofibrantly generated closed model category structure
on the category of unbounded chain complexes for which fibrations are epimorphisms
and (weak) equivalences are quasi-isomorphisms. It is further a symmetric monoidal
model category with respect to the tensor products of chain complexes.

Since we work in characteristic zero, there is a standard closed model category
structure on C DG A [16, Theorem 4.1.1] as well, for which fibrations are epimorphisms
and (weak) equivalences are quasi-isomorphisms (of CDGAs). The category C DG A
also has a monoidal structure given by the tensor product (over the ground field k) of
differential graded commutative algebras, which makes C DG A a symmetric monoidal
model category. Note that since k is assumed to be a field, this monoidal structure is
given by an exact bifunctor.

Also note that C DG A is simplicially enriched. Indeed, given A, B ∈ C DG A, we can
form MapC DG A(A, B) the simplicial set [n] �→ HomC DG A(A, B ⊗Ω∗(�n)) (where
Ω∗(�n) is the CDGA of forms on the n-dimensional standard simplex).

For any CDGA A, one can consider its category of differential graded (left) modules,
that we will denote by A-Mod. Again it has a natural model category structure with
fibrations being epimorphisms and weak equivalences being quasi-isomorphisms. Fur-
ther all assumptions in [30, Chapter 1.1] are satisfied. In particular, the tensor product of
A-modules makes A-Mod a symmetric monoidal model category (in the sense of [19])
such that the functor M⊗A—preserves weak equivalences when M is cofibrant. More-
over, for any CDGA A, the category A—C DG A of differential graded commutative



642 G. Ginot, T. Tradler, M. Zeinalian

A-algebra, in other words commutative monoid objects in A-Mod, has a natural struc-
ture of proper model category such that, for any cofibrant A-algebra B, the base change
functor B ⊗A − : A-Mod → B-Mod preserves weak equivalences [30, Chapter 1.1].

2.3. Dwyer–Kan localization and (∞, 1)-categories. The (∞, 1)-categories that we
are concerned about in this paper arise from model categories structures via the Dwyer–
Kan localization turning them into simplicial categories. Indeed simplicial categories are
models for (∞, 1)-categories [5]. We now explain briefly how one gets (∞, 1)-categories
out of model categories such as those considered in Sects. 2.1 and 2.2 above.

Following [25,29], by an (∞, 1)-category we mean a complete Segal space. Rezk has
shown that the category of simplicial spaces has a (simplicial closed) model structure,
denoted CSeS p such that a complete Segal space is precisely a fibrant object for this
model structure [29, Theorem 7.2]. Note that there is also a (simplicial closed) model
category structure, denoted SeS p, on the category of simplicial spaces such that a fibrant
object in the SeS p structure is precisely a Segal space. We let R : SeS p→ SeS p be a
fibrant replacement functor. Rezk [29] has defined a completion functor X• → X̂•which,
to a Segal space, associates an equivalent complete Segal space. Thus, the composition
X• �→ R̂(X•) gives a (fibrant replacement in the model category CSeS p) functor
LCSeS p from simplicial spaces to complete Segal spaces.

It remains to explain how to go from a model category to a simplicial space. The
standard key idea is to use Dwyer–Kan localization. Let M be a model category and W be
its subcategory of weak-equivalences. We denote L H (M,W) its hammock localization,
see [10]. One of the main property of L H (M,W) is that it is a simplicial category and
that the (usual) categoryπ0(L H (M,W)) is the homotopy category of M. Further, every
weak equivalence has a (weak) inverse in L H (M,W). When M is further a simplicial
model category, then for every pair (x, y) of objects HomL H (M,W)(x, y) is naturally
homotopy equivalent to the derived mapping space RHom(x, y).

It follows that any model category M gives functorially rise to the simplicial cat-
egory L H (M,W). Taking the nerve N•(L H (M,W)) we obtain a simplicial space.
Composing with the complete Segal Space replacement functor we get a functor M→
L∞(M) := LCSeS p(N•(L H (M,W))) from model categories to (∞, 1)-categories
(that is complete Segal spaces).

Example 1. Applying the above procedure to the model category of simplicial sets sSet ,
we obtain the (∞, 1)-category sSet∞. Similarly from the model category C DG A of
CDGAs we obtain the (∞, 1)-category C DG A∞. Note that a simplicial set is determined
by its (∞, 0)path groupoid and therefore the category of simplicial sets should be thought
of as the (∞, 1) category of all (∞, 0) groupoids. Further, the tensor product (over k)
of algebras is a monoidal functor which gives C DG A a structure of monoidal model
category, see [19]. Thus C DG A∞ also inherits the structure of a symmetric monoidal
(∞, 1)-category in the sense of [25,29]. Similarly, the disjoint union of simplicial sets
endows sSet and sSet∞ with symmetric monoidal structures.

The model category of topological spaces yields the (∞, 1)-category T op∞. Since
sSet and T op are Quillen equivalent [15,19], the associated (∞, 1)-categories are equiv-

alent (as (∞, 1)-categories): sSet∞
∼
�
∼

T op∞, where the left and right equivalences are

respectively induced by the singular set and geometric realization functors.
One can also consider the pointed versions sSet∞∗ and T op∞∗ of the above (∞, 1)-

categories (using the model categories of these pointed versions [19]).



Higher Hochschild Homology, Chiral Homology and Factorization Algebras 643

Example 2. As recalled in Sect. 2.2, there are model categories A-Mod and A-C DG A
of modules and commutative algebras over a CDGA A. Thus the above procedure gives
us (∞, 1)-categories A-Mod∞ and A-C DG A∞ and the base change functor lifts to
an (∞, 1)-functor. Further, if f : A → B is a weak equivalence, the natural functor
f∗ : B-Mod → A-Mod induces an equivalence B-Mod∞

∼→ A-Mod∞ of (∞, 1)-
categories since it is a Quillen equivalence.

Moreover, if f : A → B is a morphism of CDGAs, it induces a natural functor
f ∗ : A-Mod → B-Mod,M �→ M⊗A B, which is an equivalence of (∞, 1)-categories
when f is a quasi-isomorphism, and is a (weak) inverse of f∗ (see [30] or [20]). Here we
also (abusively) denote f ∗ : A-Mod∞ → B-Mod∞ and f∗ : B-Mod∞ → A-Mod∞
the (derived) functors of (∞, 1)-categories induced by f . Since we are working over a
field of characteristic zero, the same results applies to monoids in A-Mod and B-Mod,
that is to the categories A-C DG A∞ and B-C DG A∞. Also note that, if f : A → B,
g : A → C are CDGAs homomorphisms, we can form the (homotopy) pushout D ∼=
B ⊗L

A C .

Example 3. We denote En-Alg∞ the (∞, 1)-category of En-algebras which is given by
algebras over any En-(∞-)operads as introduced in [24, Section 5.1] in the symmetric
monoidal ((∞, 1)-)category (k-Mod∞,⊗). It is equivalent to the (∞, 1)-category asso-
ciated to model categories (deduced for instance from [16, Theorem 4.1.1]) of algebras
over the usual operad of singular chains on the little n-dimensional disk operad or as
algebras over the Barratt–Eccles operad (which is an Hopf operad) [4].

Remark 1. There are other functors that yields a complete Segal space out of a model
category. For instance, one can use the classification diagram of Rezk [29] which yields
an equivalent Segal space, see [6].

More generally, there are several model for (∞, 1)-categories and several equivalent
ways to obtain an (∞, 1)-category out of a “homotopy theory”. We believe the results
of this paper can easily be applied to the favorite model of the reader.

3. Derived Higher Hochschild Functor

3.1. Naive axiomatic approach to higher Hochschild homology. We first recall the stan-
dard construction of chain complexes computing higher Hochschild homology (also
called Hochschild homology over spaces) following [14,28]. The higher Hochschild
complex is a functor C H : sSet × C DG A → C DG A. This functor is defined as fol-
lows: the tensor products A⊗B of two CDGAs has an natural structure of CDGA(in other
words, C DG A has a symmetric monoidal structure canonically induced by the under-
lying tensor product of chain complexes). Furthermore, the multiplication A⊗ A→ A
is an algebra homomorphism since A is commutative. It follows that a C DG A can be
thought of a strict symmetric monoidal functor from the category of finite sets with
disjoint union to the category of chain complexes (whose value on a finite set J is given
by A⊗J ), which can be extended to the category of all sets by taking colimits. Given
a simplicial set X•, thought of as a functor �op → sSet , compose these two functors
to obtain a simplicial complex X• �→ A⊗X• . The total complex (that is the geometric
realization

∣
∣A⊗X• ∣∣) of this simplicial complex is, by definition, C H•X•(A, A). In more

details, we get the following explicit definitions.

Definition 2. First let Y• : �op → Sets∗ be a finite pointed simplicial set, and for
k ≥ 0, we set yk := Yk −{∗} to be the complement of the base point in Yk. Furthermore,
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let (A = ⊕
i∈Z Ai , d, •) be a differential graded, associative, commutative algebra,

and (M =⊕
i∈Z Mi , dM ) a differential graded module over A (viewed as a symmetric

bimodule). Then, the Hochschild chain complex of A with values in M over Y• is
defined as2 C H•Y•(A,M) :=⊕

n∈Z C Hn
Y•(A,M), where

C Hn
Y•(A,M) :=

⊕

k≥0

(M ⊗ A⊗yk )n+k

is given by a sum of elements of total degree n + k. In order to define a differential D on
C H•Y•(A,M), we define morphisms di : Yk → Yk−1, for i = 0, . . . , k as follows. First
note that for any map f : Yk → Yl of pointed sets, and for m⊗a1⊗· · ·⊗ayk ∈ M⊗A⊗yk ,
we denote by f∗ : M ⊗ A⊗yk → M ⊗ A⊗yl ,

f∗(m ⊗ a1 ⊗ · · · ⊗ ayk ) = (−1)εn ⊗ b1 ⊗ · · · ⊗ byl , (1)

where b j = ∏
i∈ f −1( j) ai (or b j = 1 if f −1( j) = ∅) for j = 0, . . . , yl , and n =

m•
∏

i∈ f −1(basepoint),i 
=basepoint ai . The sign ε in equation (1) is determined by the usual

Koszul sign rule of (−1)|x |•|y| whenever x moves across y. In particular, there are
induced boundaries (di )∗ : C Hk

Y•(A,M) → C Hk−1
Y• (A,M) and degeneracies (s j )∗ :

C Hk
Y•(A,M)→ C Hk+1

Y• (A,M), which we denote by abuse of notation again by di and
s j . Using these, the differential D : C H•Y•(A, A)→ C H•Y•(A, A) is defined by letting
D(a0 ⊗ a1 ⊗ · · · ⊗ ayk ) be equal to

yk∑

i=0

(−1)k+εi a0 ⊗ · · · ⊗ d(ai )⊗ · · · ⊗ ayk +
k∑

i=0

(−1)i di (a0 ⊗ · · · ⊗ ayk ),

where εi is again given by the Koszul sign rule, i.e., (−1)εi = (−1)|a0|+···+|ai−1|. The
simplicial conditions on di imply that D2 = 0.

If Y• : �op → Sets is a finite (not necessarily pointed) simplicial set, we may still
define C H•Y•(A) :=

⊕
n∈Z C Hn

Y•(A, A) via the same formula as above, C Hn
Y•(A, A) :=

⊕
k≥0(A ⊗ A⊗yk )n+k . Formula (1) again induces boundaries di and degeneracies si ,

which produce a differential D of square zero on C H•Y•(A, A) as above.
If Y• is any simplicial set we define

C H•Y•(A,M) := lim−→
K• → Y•,
K• finite

C H•K•(A,M)

as the colimit over all finite simplicial sets. If Y• is finite, then this definition agrees with
the previous ones thanks to the Yoneda lemma.

Remark 2. Note that due to our grading convention, if A is non graded, or concentrated
in degree 0, then H HY•• (A, A) is concentrated in non-positive degrees. In particular, our
grading is opposite of the one in [21].

2 We recall that we are using a cohomological type grading for our differential graded modules, see Con-
vention (7) on page 7, hence the upper index n.
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Note that the equation (1) also makes sense for any map of simplicial pointed sets
f : Xk → Yk . Since A is graded commutative and M symmetric, ( f ◦ g)∗ = f∗ ◦ g∗,
hence Y• �→ C H•Y•(A,M) is a functor from the category of finite pointed simplicial sets
to the category of simplicial k-vector spaces, see [28]. If M = A, C H•Y•(A) is a functor
from the category of finite simplicial sets to the category of simplicial k-algebras.

Now note that any map g : A→ B of CDGAs and any maps of modules ρ : M → N
over g : A→ B, i.e.ρ(am) = g(a)ρ(m), induces a map C H•Y•(g, ρ) : C H•Y•(A,M)→
C H•Y•(B, N ) of simplicial vector spaces.

The chain complex
(

C H•Y•(A), D
)

inherits a structure of (differential graded) alge-

bra. This is a formal consequence of the fact that C H•Y•(A) is a simplicial commutative
algebra. Indeed, given two simplicial vector spaces V• and W•, one defines a simpli-
cial structure on the simplicial space (V × W )k := Vk ⊗ Wk using the boundaries
dV

i ⊗ dW
i and degeneracies sV

i ⊗ sW
i . The shuffle product is (the collection of) maps

sh : Vp ⊗Wq → (V ×W )p+q defined by

sh(v ⊗ w) =
∑

(μ,ν)

sgn(μ, ν)(sνq . . . sν1(v)⊗ sμp . . . sμ1(w)),

where (μ, ν) denotes a (p, q)-shuffle, i.e. a permutation of {0, . . . , p + q − 1} mapping
0 ≤ j ≤ p− 1 to μ j+1 and p ≤ j ≤ p + q − 1 to ν j−p+1, such that μ1 < · · · < μp and
ν1 < · · · < νq .

Since C H•Y•(A,M) is a simplicial vector space, we obtain an induced shuffle map
sh : C H•Yp

(A,M)⊗ C H•Yq
(B, N )→ C H•Yp+q

(A ⊗ B,M ⊗ N ) for any CDGAs A, B
and modules M, N . Now, since A is a CDGA, the multiplication μ : A ⊗ A → A is
an algebra map, and the map ν : M ⊗ A→ M a map of A-modules. Composing these
maps with the shuffle products we obtain the multiplication

shY• : C H•Y•(A,M)⊗ C H•Y•(A)
sh→ C H•Y•(A ⊗ A,M ⊗ A)

C H•Y• (μ,ν)−→ C H•Y•(A,M).

Proposition 1. The multiplication shY• makes C H•Y•(A) a differential graded commu-
tative algebra and C H•Y•(A,M) a DG-module over C H•Y•(A), which are natural in A
and M.

Proof. The proof of the algebra structure is given in [14, Proposition 2.4.2] and the proof
of the module structure is the same.

Note that C H•pt•(A) is the (chain complex associated to the) constant simplicial
CDGA A. In particular there is a canonical quasi-isomorphism η : A = C H•pt0

(A)→
C H•pt•(A) splitting the augmentation map C H•pt•(A) → C H•pt0

(A). It follows from
Proposition 1 above that if X• is a pointed simplicial set, the canonical map pt• → X•
induces a natural A-module structure on C H•X•(A,M) (and an A-algebra structure on
C H•X•(A)). In other words, C H•X•(A,M) is naturally an A-module.

Summing up the previous discussion and proposition we obtain:

Corollary 1. The rule (Y•, A) �→ (C H•Y•(A), D, shY•) is a functor C H : sSet ×
C DG A→ C DG A. Similarly, the rule (Y•,M) �→ (C H•Y•(A,M), D, shY•) is a functor
C H : sSet∗ × A-Mod → A-Mod.
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Definition 3. The Hochschild homology of a CDGA A over a simplicial set X• is the
cohomology3 H H•X•(A) = H•(C H•X•(A), D) of the CDGA (C H•X•(A), D, sh) as a
commutative graded algebra.

Further if X• is pointed and M is an A-module, the Hochschild homology of A
with value in M over X• is the homology H H•X•(A,M) = H∗(C H•X•(A,M), D) as a
graded module over H H•X•(A).

Now let X be a topological space, we define the Hochschild homology of a C DG A A
over X to be H H•S•(X)(A) where

S•(X) = Map(�•, X)

is the singular simplicial set of X . If X is pointed, then S•(X) is a pointed simplicial set
and we define the Hochschild homology of a C DG A A with value in an A-module M
over X to be H H•S•(X)(A,M).

The Hochschild chain functor satisfies the following properties which allows one
to build explicitly and easily these chain complexes out of other simplicial sets and do
computations (for instance, see [13,14,28]).

Proposition 2 (Tensor Products of CDGAs and disjoint union of simplicial sets). Let
A, B be two CDGAs. For any X• ∈ sSet, there is a canonical isomorphism

C H•X•(A ⊗ B) ∼= C H•X•(A)⊗ C H•X•(B)
of CDGAs. Further for any simplicial set Y•, one has a natural isomorphism

C H•X•∐
Y•(A)

∼= C H•X•(A)⊗ C H•Y•(A)

of CDGAs and a natural isomorphism of modules

C H•X•∐
Y•(A,M) ∼= C H•X•(A,M)⊗ C H•Y•(A)

if X• is a pointed simplicial set.

Proof. It follows from the canonical isomorphisms (A ⊗ B)⊗n ∼= A⊗n ⊗ B⊗n and
A⊗n+m ∼= A⊗n ⊗ A⊗m .

Recall that, by functoriality, if f : Y• → X• is a map of simplicial sets, then for any
CDGA A, we have a map of algebra f∗ : C H•Y•(A) → C H•X•(A) which exhibits the
Hochschild complex of A over X• as a module over the Hochschild complex of A over
Y•. Let Z• → X•, Z• → Y• be two maps of simplicial sets and let W• be a pushout
W• ∼= X•

∐
Z• Y•.

Proposition 3. There is a natural map of simplicial modules4

C H•X•(A,M)⊗C H•Z• (A,A) C H•Y•(A, A)→ C H•W•(A,M)

which is a map of algebras if M = A (with its natural module structure). If Z• injects

into either Z•
f•→ X• or Z•

g•→ Y•, then this map is in fact an isomorphism of C H•W•(A)-
modules.

3 Recall that we are using a cohomological type grading for our differential graded modules, see Convention
(7) on page 7.

4 The tensor product in Proposition 3 is the tensor product of (simplicial) modules over the simplicial
differential graded commutative algebra C H•Z• (A, A). Passing to the Hochschild chain complexes, it induces
a natural map of CDGAs and modules and yield a quasi-isomorphism if Z• injects into either X• or Y•,
see [14, Corollary 2.4.3].



Higher Hochschild Homology, Chiral Homology and Factorization Algebras 647

Proof. The proof [14, Lemma 2.1.6] given in the case M = A applies to any module M .

Corollary 2. The rule (X•, A) �→ H H•X•(A) is a functor H H : sSet × C DG A →
CG A which satisfies the following axioms

1. bimonoidal: Hochschild homology is monoidal with respect to the monoidal struc-
tures given by the disjoint union of simplicial sets and tensor products of algebras.
In other words, there are natural isomorphisms:

H H•X•×Y•(A) ∼= H H•X•(A)⊗ H H•Y•(A), H H•X•(A ⊗ B) ∼= H H•X•(A)⊗ H H•X•(B).

2. homotopy invariance : if f : X• → Y• and g : A → B are (weak) homotopy
equivalences, then H H( f, g) : H H•X•(A)→ H H•Y•(B) is an isomorphism.

3. point There is a natural isomorphism H H•pt (A) ∼= A

A similar statement holds with the category of topological spaces instead of simplicial
sets, and with the pointed analogs of these categories (as in Corollary 1).

Proof. This follows from Proposition 3, Proposition 2, Corollary 1 and Proposition 4
below.

The axioms listed in the above proposition are not enough to uniquely determine
Hochschild homology as a functor. Indeed, we are missing an analog of the Excision/Mayer-
Vietoris axioms in the classical Eilenberg–Steenrod axioms for singular homology. The
analog of this axiom is similar to the locality axiom of a Topological Field Theory. In
view of Proposition 3, we wish to compute the Hochschild homology over an union of
two open sets as the tensor product of the Hochschild homology of each open tensored
over the Hochschild homology over their intersection. This forces us to take derived
tensor products. Thus a better framework for an axiomatic description of Hochschild
chains is given by considering derived categories or (∞, 1)-categories. We deal with
this locality axiom in Sect. 3.2 below. This axiom translates into an Eilenberg–Moore
spectral sequence for Hochschild homology, see Corollary 3.

A crucial property of Hochschild chains which allows to pass to homotopy categories,
is the fact, proved by Pirashvili [28], that the higher Hochschild chain complex is invariant
along quasi-isomorphisms in both arguments.

Proposition 4 (Homotopy and homology invariance). If f : X• → Y• is a map of

simplicial sets inducing an isomorphism in homology H•(X)
�→ H•(Y ) , then the map

C H•X•(A,M)→ C H•Y•(A,M) is a quasi-isomorphism.
Further if h : A → B is a quasi-isomorphism of CDGAs, then the induced map

h• : C H•X•(A)→ C H•X•(B) is a quasi-isomorphism of CDGAs.
If Z• is a pointed simplicial set and M is a B-module, the induced map h• :

C H•Z•(A,M)→ C H•Z•(B,M) is a quasi-isomorphism of C H•Z•(A)-modules and if α :
M → N is a map of B-modules, the induced map α• : C H•Z•(B,M)→ C H•Z•(B, N )
is a quasi-isomorphism of C H•Z•(B)-modules.

Proof. This is essentially due to Pirashvili [28]. Indeed, let Γ be the category of finite
sets, then the Hochschild chain complex C H•X•(A) is isomorphic to the tensor product

kX• ⊗Γ L(A)
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of the left Γ -module L(A) and the simplicial right Γ -module kX• . Here the left
Γ -module L(A) is defined by n �→ A⊗n+1 and formula (1). The right Γ -module kX•
is defined by n �→ lim−→

K•finite

k
[
HomΓ

([n], K•
)] where [n] is the finite set {0, . . . , n},

see [28]. A quasi-isomorphism of CDGAs induces a quasi-isomorphism of leftΓ -module
and similarly for a quasi-isomorphism of simplicial sets. Since each right Γ -module
kXm (m ∈ N) is a projective right Γ -module (see [28]), the tensor product kX• ⊗Γ L(A)
is quasi-isomorphic to the derived tensor product kX• ⊗L

Γ L(A). It follows that this com-
plex is invariant along quasi-isomorphisms in both arguments (X• and A). The proof
in the case of pointed simplicial sets and modules is the same with Γ replaced by the
category of pointed finite sets.

3.2. Higher Hochschild as an (∞, 1)-functor. In this section we deal with axioms for the
theory of higher Hochschild chains instead of mere homology. That is, we upgrade the
previous section, in particular Corollary 2, to the setting of derived categories, or more
precisely (∞, 1)-categories. In this setting, we will prove that the axioms determine
uniquely the Hochschild chain as an (∞, 1)-functor (lifting Hochschild homology).
These axioms are not specific to CDGA but rather come from the fact that any presentable
(∞, 1)-category is (homotopically) canonically tensored over simplicial sets according
to [22, Corollary 4.4.4.9].

Theorem 1. There is a canonical equivalence C HX•(A) ∼= X• � A between the
Hochschild chains and the tensor of A and X•, i.e. there are natural equivalences (in
sSet∞)

MapC DG A∞
(
C HX•(A), B

) ∼= MapsSet∞
(
X•,MapC DG A∞(A, B)

)
. (2)

In particular, the Hochschild chains lift as a functor of (∞, 1)-categories C H : sSet∞×
C DG A∞ → C DG A∞ which satisfies the following axioms

1. value on a point: there is a natural equivalence C H•pt (A) ∼= A of CDGAs.
2. monoidal: C H is monoidal with respect to both variables. Precisely, there are natural

equivalences

C H•X•∐
Y•(A)

∼= C H•X•(A)⊗ C H•Y•(A),
C H•X•(A ⊗ B) ∼= C H•X•(A)⊗ C H•X•(B).

3. homotopy gluing/pushout: C H sends homotopy pushout in sSet∞ to homotopy

pushout in C DG A∞. More precisely, given maps Z•
f→ X• and Z•

g→ Y• in sSet∞,
and W• ∼= X•

⋃h
Z• Y• a homotopy pushout, there is a natural equivalence

C H•W•(A) ∼= C H•X•(A)⊗L

C H•Z• (A)
C H•Y•(A).

Axiom (3) is the locality axiom (as for Topological Field Theories) playing the role of
the excision/Mayer-Vietoris axiom for classical homology.

Note also that the relationship between Hochschild homology and tensoring a com-
mutative algebra with the standard simplicial set model of the circle goes back to at least
(McClure et al. [26]), where it was used in the context of spectra.
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Proof. The second equivalence in the monoidal axiom follows from Proposition 2. The
rest is an immediate consequence of [22, Corollary 4.4.4.9], Sect. 3.1 and the fact that
the coproduct in C DG A∞ is given by the tensor product of CDGAs. Note that the
axioms can also be proved easily and directly using the results of Sect. 3.1, namely
Propositions 1, 2, 3 and 4.

Remark 3. As in Corollary 2, the (model) categories of simplicial sets and (compactly
generated) topological spaces being Quillen equivalent, one can replace sSet∞ by its
topological counterpart T op∞ in Theorem 1, see Sect. 4.

The locality axiom (3) in Theorem 1 yields an Eilenberg–Moore type spectral se-
quence for computing higher Hochschild homology.

Corollary 3. Given an homotopy pushout W• ∼= X• ∪h
Z• Y•, there is a natural strongly

convergent spectral sequence of cohomological type of the form

E p,q
2 := T or

H H•Z• (A)
p,q

(
H H•X•(A), H H•Y•(A)

) �⇒ H H p+q
W• (A)

where q is the internal grading. The spectral sequence is furthermore a spectral sequence
of differential H H•Z•(A)-algebras.

Recall that we are considering a cohomological grading; in particular the spectral se-
quence is concentrated in the left half-plane with respect to this grading (and p is
negative).

Proof. By Theorem 1, we have C H•W•(A) ∼= C H•X•(A)⊗L

C H•Z• (A)
C H•Y•(A) as CDGAs.

Now the spectral sequence follows from standard results on derived tensor products (of
C H•Z•(A)-modules) [20, Theorem 4.7]. That the spectral sequence is one of algebras
comes from the fact, that we can choose a semi-free resolution of C H•X• by a C H•Z•-
algebra.

Example 4. 1. It is a well-known fact, that the usual Hochschild complex of an asso-
ciative algebra A C H•(A) = C H•

S1•
(A) may be written as a T or over the bimodule

Ae = A ⊗ Aop, see e.g. [21, Proposition 1.1.13]. More explicitly,

H H•(A) = T or Ae

• (A, A).

Identifying H H pt•• (A) = A, and H H•{pt•,pt−• }(A) = A ⊗ Aop = Ae, where pt−•
denotes the point with opposite orientation, we see that, in this case, the spectral
sequence of Corollary 3 collapses at the E2 level,

T or H H
{pt•,pt−• }•• (A)

(
H H•pt•(A), H H•pt•(A)

)
= H H•

S1•(A)

where we used that S1• ∼= pt• ∪h
{pt,pt−}• pt• and further that when A is commutative,

Aop = A.
2. Let f• : Z• → X• be a map of simplicial spaces. Then, the mapping cone (C f )• is

given as the homotopy pushout (C f )• ∼= X• ∪h
Z• pt•. We obtain a spectral sequence

computing H H•(C f )•(A),

T or
H H•Z• (A)
p,q

(
H H•X•(A), A

) �⇒ H H•(C f )•(A)
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3. In a more straightforward way, we may use the gluing property to give explicit models
for spaces with cubic subdivisions. Our starting point is given by models for interval
I• and the square I 2• via,

C H•I•(A) =
∑

k

A⊗(k+2) and C H•
I 2• (A) =

∑

k

A⊗(k+2)2 .

The i th differential is given in the case of I• by multiplying the i th and (i + 1)th tensor
factors, and in the case of I 2• by multiplying the i th and (i + 1)th column of tensor
factors and the i th and (i +1)th rows of tensor factors simultaneously. For more detail,
see [14, Example 2.3.4]. Then we obtain the Hochschild complex for the cylinder
C• = I 2• ∪(I•∪I•) I• by gluing I 2• and I• along I• ∪ I• on opposite edges of I 2• , and
with this the torus T• = C• ∪(I•∪I•) I• by gluing the remaining sides together. A
more elaborate version of this is given in [14, Example 2.3.2]. By using similar, but
more elaborate considerations, one can in fact obtain Hochschild models over any
surface, see [14, Section 3.1].

Higher Hochschild chain complexes behaves much like cochains of mapping spaces
(see [14, sections 2.2, 2.4]). Indeed they satisfy a kind of exponential law:

Proposition 5 (Finite Products of simplicial sets). Let X•, Y• be simplicial sets. Then
there is a natural equivalence (in C DG A∞)

C H•X•×Y•(A)
∼→ C H•X•

(
C H•Y•(A)

)
.

Proof. It follows from Corollary 2.4.4 of [14].

The Hochschild chain functor C H : sSet∞ × C DG A∞ → C DG A∞ is essentially
(up to equivalences) determined by the homotopy pushout axiom, coproduct and its value
on a point. In other words, it is the unique (∞, 1)-functor (up to natural equivalences)
satisfying the three axioms (value on a point, coproduct and locality) listed below in
Theorem 2. This is once again a consequence of the fact that higher Hochschild is a
tensor. The precise uniqueness statement is :

Theorem 2 (Derived Uniqueness). Let (X•, A) �→ FX•(A) be a bifunctor sSet∞ ×
C DG A∞ → C DG A∞ which satisfies the following three axioms.

1. value on a point: There is a natural equivalence of CDGAs Fpt•(A) ∼= A.
2. coproduct: There are natural equivalences

F∐

I
(Xi )•(A) ∼= lim−→

K ⊂ I
K finite

⊗

k∈K

F(Xk )•(A)

3. homotopy gluing/pushout: F sends homotopy pushout in sSet∞ to homotopy pushout

in C DG A∞. More precisely, given two maps Z•
f→ X• and Z•

g→ Y• in sSet∞, and
W• ∼= X•

⋃h
Z• Y• a homotopy pushout, one has a natural equivalence

FW•(A) ∼= FX•(A)⊗L

FZ• (A) FY•(A).

Then F is naturally equivalent to the higher Hochschild chains bifunctor C H as a
bifunctor i.e. as an object in Hom(∞,1)−cat (sSet∞ × C DG A∞,C DG A∞).
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Proof. This is a consequence of the fact that C DG A∞ (and actually any presentable
(∞, 1)-category) is uniquely tensored over sSet∞, see [22, Corollay 4.4.4.9]. Alterna-
tively it can be proved by noticing that any simplicial set X• is a (homotopy) colimit of
its skeletal filtration skn X•, which in turns is obtained by taking a homotopy pushout of
skn−1 X• with coproducts of standard model�n• of the simplices which are contractible.

This (using the axioms) implies an equivalence Fskn X•(A)
�→ C H•skn X•(A)which com-

mutes with the inclusions skn−1 X• ↪→ skn X•. Thus by axiom (3), there are natural
equivalences

FX•(A) ∼= F∐
n∈N skn X•(A)

L⊗
F∐

n∈N skn X• (A)
F∐

n∈N skn X•(A) (3)

and similarly for Hochschild chains by Theorem 1 so that the conclusion follows.

Remark 4. If A is concentrated in non-positive degrees, then C H•X•(A) is also concen-
trated in non-positive degrees. This happens for instance if A is the CDGA associated
to a simplicial (non-graded) commutative algebra. In that case, it is possible to re-
place C DG A and C DG A∞ in Theorem 1 and Theorem 2 by C DG A≤0 the category
of CDGAs concentrated in non-positive degrees and C DG A≤0∞ its associated (∞, 1)-
categories (the proofs being unchanged).

Remark 5. Again, one can replace sSet∞ by its topological counterpart T op∞ in The-
orem 2, see Proposition 8.

Remark 6. Note that one can deduce from the coproduct axiom (2) in Theorem 2 and

the natural equivalence (3) that the natural map lim−→ Fskn X•(A)
�→ FX•(A) is an equiv-

alence. This is in particular true for Hochschild chains:

lim−→
n≥0

C Hskn X•(A)
�→ C HX•(A). (4)

Remark 7. If G : C DG A∞ → C DG A∞ is a functor, one can replace the value on
a point axiom by the existence of a natural quasi-isomorphism Fpt (A) ∼= G(A). The
proof of the Theorem 2 shows the following

Corollary 4. Let G : C DG A∞ → C DG A∞ be a functor and (X•, A) �→ FX•(A) be
a bifunctor sSet∞ × C DG A∞ → C DG A∞ which satisfies the axioms (2) and (3) in
Theorem 2 and with axiom (1) replaced by Fpt•(A) ∼= G(A). Then FX•(A) is naturally
equivalent C H•X•(G(A)).

For instance, consider the bifunctor given by (X•, A) �→ C H•X•(A)⊗C H•X•(B)whose
value on a point is the functor A �→ A ⊗ B. By Corollary 4, this functor is isomorphic
to (X, A) �→ C H•X•(A ⊗ B) which gives another proof of the fact that the Hochschild
chains preserve finite coproduct of CDGAs.

Corollary 5. The Hochschild chain bifunctor C H : sSet∞ × C DG A∞ → C DG A∞
commutes with finite colimits in sSet∞ and all colimits in C DG A∞, that is there are
natural equivalences

C H•lim−→
F

Xi•(A) ∼= lim−→
F

C H•Xi•(A) (for a finite category F),

C H•X•( lim−→ Ai ) ∼= lim−→C H•X•(Ai ).
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Proof. Any finite colimits can be obtained by a composition of coproducts and pushouts
(or coequalizers). Thus the result for colimits in sSet∞ follows from Theorem 1, Ax-
ioms (2) and (3). Let lim−→

i∈I
Ai be a non-empty colimit of CDGAs and let i0 be an object

in the indexing category I. By functoriality we can define a functor GI : C DG A∞ →
C DG A∞ by the formula A �→ GI(B) := lim−→ B̃i where B̃i ∼= Ai if i 
= i0 and

B̃i0
∼= B. In other words we fix all the variables but the one indexed by i0. Now applying

Corollary 4 to the bifunctor defined by FX•(B) ∼= lim−→C H•X•(B̃i ) we get an natural

equivalence

C H•X•( lim−→
i∈I

Ai ) ∼= lim−→
i∈I

C H•X•(Ai ).

Since the simplicial module n �→ C H•Xn
(k) is isomorphic to the constant simplicial

k-algebra n �→ k, the result also follows for empty colimits.

Example 5. By Corollary 5, given two maps f : R → A and g : R → B of CDGAs,
there is a natural equivalence (in C DG A∞)

C H•X•
(

A
L⊗
R

B
) ∼= C H•X•(A)

L⊗
C H•X• (R)

C H•X•(B).

3.3. Pointed simplicial sets and modules. In this section we quickly explain how to add
an A-module M to the story developed in Sect. 3.2.

Let A be a CDGA and recall from Example 2 the (∞, 1)-category A-Mod∞ induced
by the (model category) A-Mod of A-modules. Similarly, the model category of pointed
simplicial sets yields the (∞, 1)-category sSet∞∗ of pointed simplicial sets (Example 1).

Since the inclusion pt• → X• is always a cofibration, the canonical equivalence
C H•X•(A,M) ∼= M ⊗A C H•X•(A) given by Proposition 3 implies that

C H•X•(A,M) ∼= M
L⊗
A

C H•X•(A) ∼= M
L⊗

C H•pt• (A)
C H•X•(A). (5)

naturally in A-Mod∞ and C H•X•(A)-Mod∞.
Proposition 2, Proposition 3, Proposition 5, Theorem 1 and its proof imply

Theorem 3. The Hochschild chain lifts as a bifunctor of (∞, 1)-categories C H(−)(A,−) :
sSet∞∗ × A-Mod∞ → A-Mod∞ which satisfies the following axioms

1. value on a point: C H•pt•(A,M) ∼= M in A-Mod∞.
2. action of C H : C H•X•(A,M) is naturally a C H•X•(A)-module, i.e. the Hochschild

chain lifts as an (∞, 1)-functor C H•X•(A,−) : A-Mod∞ → C H•X•(A)-Mod∞.
3. bimonoidal: there is an natural equivalence

C H•X•∐
Y•(A,M) ∼= C H•X•(A,M)⊗ C H•Y•(A)

in A-Mod∞ as well as in C H•X•∐
Y•(A)-Mod∞ For M ∈ A-Mod∞ and N ∈

B-Mod∞, there is an natural equivalence

C H•X•(A ⊗ B,M ⊗ N ) ∼= C H•X•(A,M)⊗ C H•X•(B, N )

in A ⊗ B-Mod∞ and C H•X•(A ⊗ B)-Mod∞.
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4. locality: let f : Z• → X• and g : Z• → Y• be maps in sSet∞∗. There is an natural
equivalence

C H•
X•⋃h

Z• Y•(A,M ⊗L

A N ) ∼= C H•X•(A,M)⊗L

C H•Z• (A)
C H•Y•(A, N )

in A-Mod∞ and C H•
X•⋃h

Z• Y•(A)-Mod∞. If N = A, then only X• needs to be

pointed and the maps may be in sSet∞.
5. product: There is an natural equivalence

C H•X•×Y•(A,M)
∼→ C H•X•

(
C H•Y•(A),C H•Y•(A,M))

)

in A-Mod∞ and C H•X•×Y•(A)-Mod∞.

Proposition 6. Let G : A-Mod∞ → A-Mod∞ be an (∞, 1)-functor and let M :
sSet∞∗× A-Mod∞ → A-Mod∞ be any (∞, 1)-bifunctor which satisfies the following
axioms

i) value on a point: M(pt•,M) ∼= G(M) naturally in A-Mod∞.
ii) action of C H : M(X•,M) is naturally a C HX•(A)-module.

iii) locality: There is a natural equivalence ( in A-Mod∞)

M(X• ∪h
Z• Y•,M) ∼=M(X•,M)⊗L

C H•Z• (A)
C H•Y•(A)

Then M is naturally equivalent to C H(−)(A,G(−)) as an (∞, 1)-bifunctor.

Note that Axiom ii) is needed to make sense of Axiom iii).

Proof. Let Y• be in sSet∗. The locality axiom for the pushout pt• ← pt•
g→ Y• (where

we take X• = pt•) gives natural equivalences

M(X•,M) ∼=M(pt•,M)
L⊗

C H•pt• (A)
C H•X•(A) ∼= G(M)

L⊗
C H•pt• (A)

C H•X•(A)

where the last equivalence follows from Axiom i).

Theorem 3 yields a relative version of the Eilenberg–Moore spectral sequence. In
fact the proof of Corollary 3 (using Theorem 3 instead of Theorem 1) yields

Corollary 6. Given an homotopy pushout W• ∼= X• ∪h
Z• Y•, there is a natural strongly

convergent spectral sequence of cohomological type of the form

E p,q
2 := T or

H H•Z• (A)
p,q

(
H H•X•(A,M), H H•Y•(A, N )

) �⇒ H H p+q
W•

(
A,M

L⊗
A

N
)

where q is the internal grading. The spectral sequence is furthermore a spectral sequence
of differential H H•Z•(A)-modules.

Recall that we are considering a cohomological grading; thus the spectral sequence lies
in the left half-plane with respect to this grading (and p is negative).

Example 6. If X•, Y• and Z• are contractible, the spectral sequence in Corollary 6 boils

down to the usual (see [20]) Eilenberg–Moore spectral sequence T or H•(A)
p,q(

H•(M), H•(N )
)
�⇒ H p+q

(
M ⊗L

A N
)

of differential H•(A)-modules.
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Remark 8. Besides the Eilenberg Moore spectral sequence 6, there is also an Atiyah–
Hirzebruch kind of spectral sequence for higher Hochschild chains: the skeletal filtration
of a simplicial set X• induces a decreasing filtration · · · ⊃ F p · · · ⊃ F−1 ⊃ F0 ⊃ {0}
of C H•X•(A,M), where F p :=⊕

n≤−p C H•Xn
(A,M). This filtration yields a left half-

plane spectral sequence of cohomological type with exiting differential and further, the
cohomology of the associated graded

⊕
p F p/F p+1 is the Hochschild chain complex

over X• of the CGA H•(A) with value in H•(M). Hence we get from [7]:

Proposition 7. There is a strongly convergent spectral sequence of cohomological type

E2
p,q := H H p+q

X• (H
•(A), H•(M))q �⇒ H H p+q

X• (A,M)

where q is the internal degree. If M = A, this is a spectral sequence of CDGAs.

For the sake of completeness, we also mention that there is another spectral sequence
to compute higher Hochschild due to Pirashvili, which is the Grothendieck spectral
sequence associated to the composition of functors X• �→ kX• �→ kX• ⊗L

Γ L(A) that
was defined in Proposition 4. See [28, Theorem 2.4] for details.

4. Factorization Algebras and Derived Hochschild Functor Over Spaces

The main goal of this section is to prove that Hochschild chains are a special kind
of factorization algebras in the sense of [8] (allowing to compute it using covers or
CW-decomposition).

4.1. The Hochschild (∞, 1)-functor in T op. The Quillen equivalence between the model

categories of simplicial sets and topological spaces induces an equivalence T op∞
S∞−→

sSet∞ of (∞, 1)-categories (Example 1). Here S∞ is the (∞, 1)-functor lifting the
singular set functor X �→ S•(X) = Map(�•, X). Recall that to any space X we nat-
urally associate the CDGA C H•X (A) = C H•S•(X)(A), the Hochschild chains of A over
X . The canonical adjunction map X• → S•(|X•|) yields a natural quasi-isomorphism
C H•X•(A)→ C H•|X•|(A) of CDGAs by Proposition 4.

From the above equivalence T op∞
∼−→ sSet∞ (or alternatively by changing sSet∞

to T op∞ in all the proofs in Sects. 3.2 and 3.3), we deduce the following topological
counterpart to the results of Sects. 3.2 and 3.3.

Proposition 8. i) The Hochschild chain over spaces functor (X, A) �→ C H•X (A) lifts
as an (∞, 1)-bifunctor C H : T op∞ × C DG A∞ → C DG A∞ fitting into the
commutative diagram

sSet∞ × C DG A∞
C H �� C DG A∞

T op∞ × C DG A∞

S∞ �
��

C H

������������������

that satisfies all the axioms of Theorem 1 (with T op∞ instead of sSet∞).
ii) Further, up to natural equivalences of (∞, 1)-bifunctors, it is the only bifunctor

T op∞ × C DG A∞ → C DG A∞ satisfying the axioms of Theorem 2 (with T op∞
instead of sSet∞).
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iii) Replacing sSet∞ by T op∞ and sSet∞∗ by T op∞∗, the analogs of Corollary 3,
Proposition 5, Corollary 5, Theorem 3 and Corollary 6 hold.

The fact that Hochschild chains are computed by taking colimits over finite simplicial
sets has the following translation for topological spaces.

Proposition 9 (Compact support). Let X be (weakly homotopic to) a CW -complex, A
a CDGA and M an A-module. There are natural equivalences

lim−→
K → X
K compact

(
C H•K (A)

) �−→ C H•X (A) and lim−→
K → X
K compact

(
C H•K (A,M)

) �−→ C H•X (A,M)

in C DG A∞ and C H•X (A)-Mod∞ respectively.

Proof. Since C H•X (A,M) ∼= M ⊗L
A C H•X (A) in C H•X (A)-Mod∞, we only need to

prove that the first map is an equivalence.
We first assume X to be a CW -complex of finite dimension n. Let X• be a simplicial

set model of X with no non-degenerate simplices in dimension m > n. Then, given a
finite simplicial set K•, any map f : K• → X• factors through a finite simplicial set
K̃• with no non-degenerate simplices in dimension m > n. Thus, the realization |K̃•| is
compact. Conversely, if K̃ is a compact subset of the CW -complex X , it has a simplicial
model K• with finitely many non-degenerate simplices. Further, any map K → X has a
compact image, since X is Hausdorff, and thus factors through a compact subset of X .
We get a zigzag

lim−→
K → X
K compact

C H•K (A)
�←− lim−→

K̃ ⊂ X
K̃ compact

C H•
K̃
(A)

�−→ lim−→
K̃•∈ FNDS(X•)

C H•
K̃•
(A)

�−→ lim−→
K• → X•
K• finite

C H•K•(A)
�−→ C H•X•(A)

�−→ C H•X (A)

where the first and third arrows are equivalences since they are induced by cofinal
functors. Here F N DS(X•) is the set of simplicial subsets of X• with finitely many
non-degenerate simplices. That the other arrows in the zigzag are equivalences follows
from Proposition 8 and thus the result is proved for finite dimensional CW -complexes.

We now reduce the general case to the finite dimensional one. Let X• be a simplicial
set model of X . The geometric realization |skn X•| of skn X• is a finite dimensional
CW -complex, and, if K is compact, any map f : K → X factors as the composition
K → |skn X•| ↪→ X for some n. Hence the natural map

lim−→
n

(
lim−→

K̃ → |skn X•|
K̃ compact

C H•K (A)
)
−→ lim−→

K → X
K compact

C H•K (A)

is a natural equivalence in C DG A∞. The result now follows from the finite dimensional
case, the natural equivalence lim−→

n

C H•skn X•(A)
∼→ C H•X•(A) (see Remark 6), and

Proposition 8.i).
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Lemma 1. Let X0 be (weakly homotopic to) a CW -complex and X be (weakly homotopic
to) a CW -complex obtained from X0 by attaching a countable family (Cn)n∈N of cells.
We let Xn be the result of attaching the first n cells. For any CDGA A, one has a natural
equivalence

lim−→
n∈N

C H•Xn
(A)

�−→ C H•X (A)

in C DG A∞, as well as lim−→
n∈N

C H•Xn
(A,M)

�−→ C H•X (A) in C H•X (A)-Mod∞.

Proof. Since C H•X (A,M) ∼= M ⊗L
A C H•X (A) as C H•X (A)-modules, we only need to

consider the case of C H•X (A). Further, the cells Ci are homeomorphic to euclidean balls
and the attaching maps have domain given by their boundaries. Thus we may assume that
each Xn is obtained from a simplicial set model (X0)• of X0 by adding finitely many non-
degenerate simplices. Thus we get a sequence of cofibrations of simplicial sets (i.e. degree
wise injective maps) (X0)• ↪→ (X1)• · · · ↪→ (Xn)• · · · ↪→ X• = lim−→

n∈N
(Xn)• which are

(homotopy) models for the sequence of maps X0 → X1 → · · · → X . By definition of
Hochschild chains, there is a canonical equivalence lim−→

K• → X•
K• finite

C H•K•(A) ∼= C H•X•(A) of

CDGAs. The maps (Xn)• → X• assemble to give a map of colimits

lim−→
n∈N

(
lim−→

K• → (Xn )•
K• finite

C H•K•(A)
)
−→ lim−→

K• → X•
K• finite

C H•K•(A). (6)

Given a finite set Ki and a map fi : Ki → Xi , the image fi (Ki ) lies in some (Xn)i since
X• = lim−→

n∈N
(Xn)• and fi (Ki ) is finite. This proves that the family K• → (Xn)• of maps

from a pointed set into some (Xn)• is cofinal and thus the map (6) is an equivalence in
C DG A∞.

Remark 9. It is possible to enhance the result of Lemma 1 in the following way. One can
take any space X∅ and a space X obtained by attaching a family (Ci )i∈I of other spaces
to it. Then, essentially the same argument as the one in Lemma 1 shows that C H•X (A) is
the colimit lim−→C H•X F

(A) over all possible subspaces X F ⊂ X obtained by attaching

finitely many Ci ’s.

Let us conclude this section by giving an analog of Leray acyclic cover theorem/Mayer
Vietoris principle for Hochschild chains.

Let X be a topological space and U = (Ui )i∈I be a good cover for X , i.e. a cover
such that the Ui and all of their nonempty finite intersections are contractible. We denote
N•(I ) the nerve of the cover, that is N0(I ) = I , N1(I ) is the set of pairs of indices i0, i1
such that Ui0 ∩Ui1 
= ∅ and so on.

Corollary 7. Let X be a topological space and U = (Ui )i∈I be a good cover for X such
that the inclusions Ui ∩U j → Ui are cofibrations. Then there is a natural equivalence

C H•X (A)
�−→ A⊗I L⊗

A⊗N1(I )
A⊗I
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in C DG A∞. Here the left and right module structure are induced by the two canonical
projections N1(I )→ N0(I ) = I given by (i, j) �→ i , (i, j) �→ j .

Proof. Since each Ui is contractible, the natural map C H•Ui
(A) → C H•pt (A) ∼= A

is an equivalence by Theorem 1 and similarly (when Ui ∩ U j is not empty) for the
natural map C H•Ui∩U j

(A)→ A because U is a good cover. Since X is the coequalizer
∐

N1(I ) Ui ∩ U j ⇒
∐

I Ui → X , the result follows from the coproduct axiom (2) and
the gluing axiom (3) in Theorem 1 (or Proposition 8).

4.2. (Pre)Factorization algebras. We now explain a relationship between factorization
algebras (as defined by Costello and Gwilliam [8,9]) and Higher Hochschild chains.

Let A be a CDGA and X be a topological space. We denote Op(X) the set of open
subsets of X . For every open subset V of X and a family of disjoint open subsets
U1, . . . ,Un ⊂ V , there is a canonical morphism of CDGAs

μU1,...,Un ,V : C H•U1
(A)⊗ · · · ⊗ C H•Un

(A)→ (
C H•V (A)

)⊗n → C H•V (A)

induced by functoriality by the inclusions Ui ↪→ V and the multiplication in C H•V (A).
These maps are the structure maps of a prefactorization algebra on X in the sense

of [8,9]. Note that for a (possibly (∞, 1)-) symmetric monoidal category (C,⊗), we
denote by P FacX (C) the ((∞, 1)-) category of prefactorization algebras on X taking
values in C (see [8]). In particular, P FacX (C DG A) is the category of commutative
prefactorization algebras on X as defined in [8]. We will actually be only interested in
the case where C is an ((∞, 1)-)category of algebras over an (∞)-Hopf operad. We have:

Lemma 2. The rule U �→ C H•U (A) together with the maps μU1,...,Un ,V define a natural
structure of a prefactorization algebra on X. Further

1. The above rule A �→
((

C H•(U )(A)
)

U∈Op(X);
(
μU1,...,Un ,V

))
defines a functor CHX :

C DG A→ P FacX (C DG A).
2. CHX lifts as an (∞, 1)-functor CHX : C DG A∞ → P FacX (C DG A∞).

Proof. First we note that C H•∅ (A) ∼= k and that the maps μU1,...,Un ,V are CDGAs
morphisms. Further, if V1, . . . , Vl is a collection of pairwise disjoint open subsets of
V ∈ Op(X) and U1, . . . ,Un is another family of pairwise disjoint open subsets of V
such that each Ui is contained in some Vj , we can form the diagram

⊗l
j=1

(⊗
Ui⊂Vj

C H•Ui
(A)

) μU1,...,Un ,V ��

⊗l
j=1

(
μ(Ui⊂V j ),V j

)

��

C H•V (A)

⊗l
j=1

(
C H•Vj

(A)
)

μV1,...,V j ,V

��������������������

which is commutative by functoriality of Hochschild chains. This proves that the rule
U �→ C H•U (A) is a prefactorization algebra with value in the category C DG A. The
naturality follows from the naturality of Hochschild chains in the algebra variable and the
lift to the (∞, 1)-framework follows from (the proof of) Proposition 8 and Theorem 1.
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In particular, the prefactorization algebra U �→ C H•U (A) is a commutative prefac-
torization algebra.

Following the terminology of [8,9], we said that an open cover U of U ∈ Op(X)
is factorizing if, for all finite collections x1, . . . , xn of distinct points in U , there are
pairwise disjoint open subsets U1, . . . ,Uk in U such that {x1, . . . , xn} ⊂ ⋃k

i=1 Ui . To
define a factorization algebra, we need to introduce the Čech complex of a prefactor-
ization algebra F . Let U be a cover and denote PU the set of finite pairwise disjoint
open subsets {U1, . . . ,Un , Ui ∈ U}. Now the Čech complex Č(U ,F) is the chain
(bi-)complex

Č(U,F) =
⊕

PU
F(U1)⊗ · · · ⊗ F(Un)←

⊕

PU×PU
F(U1 ∩ V1)⊗ · · · ⊗ F(Un ∩ Vm)← · · ·

where the horizontal arrows are induced by the alternate sum of the natural inclusions as
for the usual Čech complex of a cosheaf (see [8]). Let us introduce a convenient notation
for the Čech complex: given α1, . . . , αk ∈ PU , we denote

F(α1, . . . , αk) =
⊗

Ui1∈α1,...,Uik∈αk

F(Ui1 ∩ · · · ∩Uik ), .

The prefactorization algebra structure yields, for all j = 1, . . . , k, natural maps
F(α1, . . . , αk)→ F(α1, . . . , α̂ j , . . . , αk). The Čech complex of F can be simply writ-
ten as

Č(U ,F) =
⊕

k>0

⊕

α1,...,αk∈PU
F(α1, . . . , αk)[k − 1]. (7)

The prefactorization algebra structure also induce a canonical map Č(U ,F)→ F(U ).
A prefactorization algebra F on X (with value in C DG A or k-Mod) is said to be a

factorization algebra if, for all open subset U ∈ Op(X) and every factorizing cover U
of U , the canonical map

Č(U ,F)→ F(U )

is a quasi-isomorphism (see [8,9]). When F is a commutative factorization algebra, the
sequence

⊕
α1,...,αk∈PU F(α1, . . . , αk)[k − 1] is naturally a simplicial CDGA and thus

the Čech complex Č(U ,F) has a natural structure of CDGA.
Note that X itself is always a factorizing cover. A Hausdorff space usually admits

many different factorizing covers. This is in particular true for manifolds. Indeed, choos-
ing a Riemannian metric on a manifold X yields a nice factorizing cover given by the
set of geodesically convex neighborhoods of every point in X .

It is shown in [8] that, if U is a basis for the topology of a space X which is also a
factorizing cover, and F is a U-factorization algebra, then one obtains a factorization
algebra iU∗ (F) on X defined by

iU∗ (F)(V ) := Č(UV ,F) (8)

where UV is the cover of V consisting of open subsets in U which are also subsets of
V . We recall that a U-factorization algebra is like a factorization algebra, except that
F(U ) is only defined for U ∈ U and further that we only require a quasi-isomorphism
Č(V,F) ∼→ F(U ) for factorizing covers V of U consisting of open sets in U .



Higher Hochschild Homology, Chiral Homology and Factorization Algebras 659

A factorizing good cover is a good cover which is also a factorizing cover. For
instance, any CW-complex has a factorizing good cover. Admitting a basis of factorizing
good cover is a sufficient condition to prove that the Hochschild prefactorization algebra
CHX is a factorization algebra:

Theorem 4. Let X be a topological space with a factorizing good cover and A be a
CDGA. Assume further that there is a basis of open sets in X which is also a factorizing
good cover. The prefactorization algebra CHX : U �→ C H•U (A) given by Lemma 2 is a
factorization algebra on X.

In particular, for any factorizing cover U of X, there is a canonical equivalence of
CDGAs

C H•X (A) ∼= Č(U , CHX )

For instance the theorem applies to all manifolds (that we always assume to be para-
compact) and more generally to CW-complexes.

Proof. Let U be a factorizing good cover. We first prove that the rule U �→ C H•U (A) is a
U-factorization algebra. Since, we already know that U �→ C H•U (A) is a prefactoriza-
tion algebra (Lemma 2), we only need to prove that, for any U ∈ U and any factorizing
cover V of U consisting of open sets in U , the canonical map Č(V, CHX )

∼→ C H•U (A)
is a quasi-isomorphism. Let us denote PV the set of finite pairwise disjoint open subsets
{(U1, . . . ,Un , Ui ∈ V}. Now the Čech complex Č(V, CHX ) is the chain (bi-)complex
⊕

PV
C H•U1

(A)⊗ · · ·⊗C H•Un
(A)←

⊕

PV×PV
C H•U1∩V1

(A)⊗ · · ·⊗C H•Un∩Vm
(A)← · · ·

where the horizontal arrows are induced by the alternate sum of the natural inclusions
(see [8]). Since U is a good cover, Theorem 1 and the prefactorization algebra structure
of CHX gives a natural equivalence of chain complexes

⊕

PV
C H•U1

(A)⊗ · · · ⊗ C H•Un
(A)

�
��

⊕

PV×PV

( ⊗
C H•Ui∩Vj

(A)
)

��

�
��

· · ·��

⊕

PV
A ⊗ · · · ⊗ A

⊕

PV×PV
A ⊗ · · · ⊗ A�� · · ·��

(9)

We can form a simplicial set N•(V) given by the nerve of the cover V . Since V is
factorizing, the canonical map

lim−→
K•

dis j
↪→ N•(V)

K• finite

C H•K•(A) −→ lim−→
K• → N•(V)
K• finite

C H•K•(A) ∼= C HN•(V)(A) (10)

(where the left colimit is over maps whose images are required to be disjoint open sub-
sets) is an equivalence. The bottom line of diagram (9) now identifies with the left colimit
of the map (10), hence with Hochschild chain complex of nerve N•(V). Since U is a
good cover, by the Nerve Theorem (or Leray acyclic cover), the geometric realization
of N•(V) is quasi-isomorphic to the reunion

⋃
V Ui = U . Since U is assumed to be
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contractible, we get from above and Proposition 4 a natural equivalence (of prefactoriza-

tion algebras) Č(V, CHX )(U )
�→ C H•U (A) (∼= A). Thus the U-prefactorization algebra

U �→ C H•U (A) is a U-factorization algebra. We denote C HU this U-factorization alge-
bra.

To conclude, we are left to prove that the induced factorization algebra iU∗ (C HU ) on
X is equivalent to CHX as a prefactorization algebra. Let V be an open subset of X .
By [8], there is a natural equivalence iU∗ (C HU )(V ) ∼= Č(UV ,C HU ) (where UV is the
cover of V consisting of open subsets in U which are also subsets of V ). Since the cover
UV is a good cover, as in the case where V was in U above, there is a natural equivalence

⊕

PUV

C H•U1
(A)⊗ · · · ⊗ C H•Un

(A)

�
��

⊕

PUV×PUV

( ⊗
C H•Ui∩Vj

(A)
)

��

�
��

· · ·��

⊕

PUV

A ⊗ · · · ⊗ A
⊕

PUV×PUV

A ⊗ · · · ⊗ A�� · · ·��

where, as for diagram (9) above, the bottom line is equivalent to the Hochschild chain
complex C H•N•(UV )

(A) of the simplicial set N•(UV ) given by the nerve of UV . Since
U is a good cover, we can again use the Nerve Theorem to see that C H•N•(UV )

(A) ∼=
C H•⋃

UV
Ui
(A) ∼= C H•V (A) and thus to get the natural equivalence (of prefactorization

algebras) Č(V, iU∗ (C HU ))(U )
�→ C H•V (A) ∼= CHX (V ).

If F is a factorization algebra on X (with value in k-Mod or k-Mod∞), and f :
X → Y is a continuous map, one can define the pushforward f∗(F) by the formula
f∗(F)(V ) = F( f −1(V ))which actually is a factorization algebra on Y , see [8]. Costello
and Gwilliam [8, Section 3.a] have defined the factorization homology H F(F) of F
as the pushforward p∗(F) where p : X → pt is the unique map. In other words, we
have natural equivalences

H F(F) ∼= p∗(F) ∼= F(X) ∼= Č(U ,F) (11)

in k-Mod∞ (for any factorizing cover U of X ). Note that, despite its name, H F(F) is a
cochain complex (up to equivalences) and, in particular a derived object (which may be
thought as the “derived global sections” of F). If F has value in C DG A, then H F(F)
is an object in C DG A∞ too. Theorem 4 and Lemma 2 yields

Corollary 8. Let X be a CW-complex. The Hochschild prefactorization functor CHX
is actually a functor CHX : C DG A∞ → FacX (C DG A∞). Further, the factorization
homology of CHX (A) is equivalent to C H X• (A) (as an object of C DG A∞); in other
words the following diagram commutes:

C DG A∞
C H•X (−) ��

CHX

��

C DG A∞

FacX (C DG A∞)
H F(−)

������������������
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For manifolds, we will give below another geometric interpretation of the functor CHX
in terms of embeddings of manifolds in euclidean spaces (see Example 7, Corollary 9
and Remark 11).

A factorization algebra F on a manifold is said to be locally constant, if, the natural
map F(U )→ F(V ) is a quasi-isomorphism when U ⊂ V are homeomorphic to a ball
(see [8,9]). Furthermore, we call F a commutative constant factorization algebra (on
X ), if there is a CDGA A, and natural quasi-isomorphisms F(U ) → A for any open
U ⊂ X homeomorphic to a ball. Here, natural means that for any pairwise disjoint open
subsets homeomorphic to a ball U1, . . . ,Un ∈ V of a contractible open subset V ∈ X
also homeomorphic to a ball, the following diagram is commutative in k-Mod∞

F(U1)⊗ · · · ⊗ F(Un)

��

μU1,...,Un ,V �� F(V )

��
A
⊗n

m(n)
�� A

(12)

where m(n) is the (n − 1)-times iterated multiplication of A.

Example 7. A class of examples of locally constant factorization algebras occurs as
follows. By results of Lurie [24] (also see Proposition 10 below), the data of a locally
constant factorization algebra on R

n is the same as the data of an En-algebra. Thus any
CDGA yields a locally constant factorization algebra (denoted A for the moment) on
R

n (for any n ≥ 1) and also, by restriction, on any open subset of R
n .

Now, let X be any manifold, and let i : X ↪→ R
n be an embedding of X in R

n .
Let N X be an open tubular neighborhood of X in R

n . We write p : N X → X for the
bundle map. Any factorization algebra F on R

n restricts to a factorization algebra F|N X
on N X and the pushforward p∗(F|N X ) is a factorization algebra on X . Thus, a CDGA
A yields a locally constant factorization algebra p∗(A|N X ) on X for any manifold X .
Since p∗(F|N X )(U ) ∼= F(p−1(U )), it is easy to check that p∗(A|N X ) is indeed locally

constant. Since by construction there is a natural quasi-isomorphism A(B) ∼→ A =
A(Rn) for any open ball B ⊂ R

n , the induced locally constant factorization algebra
p∗(A|N X ) satisfies that there exists a natural equivalence A|N X (B)

∼→ A for any open
set B ∈ Op(X) homeomorphic to a ball. In other words, we can think to the factorization
algebra p∗(A|N X ) as being constant (and commutative).

Note that the previous analysis can be extended to any space X which embeds as the
base of locally trivial fibration U → X where U is an open in some R

n and the fibers
are homeomorphic to a ball.

Example 8. Let G be a discrete group acting properly discontinuously on a manifold X .
According to [8], any G-equivariant factorization algebra F on X yields a factorization
algebra FG on X/G. Further, it is easy to check that, if F is locally constant then so
is FG too. In particular any CDGA A yields a locally constant factorization algebra on
R

n/G for any discrete group acting properly discontinuously on R
n .

The next corollary describes what constant commutative factorization algebra are;
namely they all are equivalent to derived Hochschild chains for some CDGA.

Corollary 9. Let X be a manifold and F a commutative factorization algebra such
that there exists a CDGA A and a natural equivalence F(B) ∼→ A for any open set
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B ∈ Op(X) homeomorphic to a ball. Then F is equivalent to the Hochschild chain
factorization algebra CHX (A) (given by Lemma 2).

In particular, there is a natural equivalence H F(F) ∼= C H•X (A).

Proof. Choosing a Riemannian metric on X , the set Ballg(X) of geodesic open balls is
factorizing. Further, F being constant, we have, for any α = {B1, . . . , Bk} ∈ Ballg(X),
natural equivalences

F(α) = F(B1)⊗ · · · ⊗ F(Bk) ∼=
k⊗

i=1

A ∼= C H•B1
(A)⊗ · · · ⊗ C H•Bk

(A) ∼= CHX (α)

Similarly, there are natural equivalences

F(α1, . . . , α j ) ∼= CHX (α1, . . . , α j )

for any α1, . . . , α j ∈ PBallg(X). Thus, by Theorem 4, we have

H F(F) ∼= Č(Ballg(X),F)
∼=

⊕

k>0

⊕

α1,...,αk∈PBallg(X)

F(α1, . . . , αk)[k − 1]

∼=
⊕

k>0

⊕

α1,...,αk∈PBallg(X)

CHX (α1, . . . , αk)[k − 1] ∼= C H•X (A).

It follows that we have an equivalence Č(Ballg(X),F) ∼= Č(Ballg(X), CHX ). The same
analysis can be made for any open subset U ∈ Op(X) instead of X and the naturality
of Hochschild chains ensures that the equivalence F(U ) ∼= C H•U (A) is natural in U .

Remark 10. Note that the above Corollary 9 can be extended to manifolds with corners,
where, by a locally constant factorization algebra on a manifold with corners, we mean a
factorization algebra which is locally constant if, whenever restricted to the strata (which
are manifolds), it is locally constant see [2,8]. One can extend the definition of constant
factorization algebra in the same way.

Let us also sketch how Corollary 9 can be used in the general case of locally constant
commutative factorization algebras. Let A be a locally constant factorization algebra
on a manifold M and assume that there is a codimension 1 submanifold (possibly with
corners) N of M with a trivialization N × I of its neighborhood such that M is de-
composable as M = X ∪N×I Y where X,Y are submanifolds (with corners) of M
glued along N × I . The inclusion i : N × I → X induces a map of factorization
algebras i∗(A|N×I )→ A|X , which gives a structure of A|N×I -module to A|X since A
is commutative.

Lemma 3. If A|Y is constant (say A|Y (B) ∼= A for a CDGAA and any ball B ∈ Op(Y )),

A is equivalent to A|X
L⊗

CHN×I (A)
CHY (A) in FacM (C DG A∞) (where the factorization

algebras are pushforward to M along the natural inclusions). In particular,

H F(A) ∼= H F(A|X )
L⊗

C H•N×I (A)
C H•Y (A).



Higher Hochschild Homology, Chiral Homology and Factorization Algebras 663

Using a handle decomposition of M , one can use the lemma above to compute the
homology of a locally constant commutative factorization algebra A in terms of (iter-
ated) derived tensor products of derived Hochschild functors (see Sect. 5.2 for a related
construction).

Proof. It follows from Corollary 10 and Lemma 5.

Remark 11. Corollary 9 implies that the factorization algebras p∗(A|N X ) are indepen-
dent (up to equivalences in FacX (k-Mod∞)) of the choices of the embedding and of the
tubular neighborhood made in Example 7. Indeed, if i1 : X ↪→ R

n1 and i2 : X ↪→ R
n2

are two embeddings of a manifold X in an euclidean space, and given two choices

R
n1 ⊃ N1 X

p1→ X, R
n2 ⊃ N2 X

p2→ X of tubular neighborhoods, Corollary 9 implies
that there are natural equivalences

p1∗(A|N1 X )(U )
�−→ C HU• (A)

�←− p2∗(A|N2 X )(U )

for open subsets U ⊂ X .

Example 9. Let M be a manifold and A = C∞(M) its algebra of functions. Also let
�g be a compact Riemann surface of genus g and F the factorization algebra (see
Theorem 4) on �g defined by the rule U �→ C•U (C∞(M)) (here, in the definition of
Hochschild chains, the tensor product over k is the completed tensor product so that
C∞(M)⊗ C∞(M) ∼= C∞(M × M)). Let Ωn(M) denote the de Rham n-forms on M ,
viewed as complex concentrated in degree 0.

An analogue of Hochschild–Kostant–Rosenberg theorem for Hochschild chains over
surfaces [14, Theorem 4.3.3] implies that the factorization homology of F on �g is
given by

H F(F) ∼= SC∞(M)
(
Ω1(M)[2]

)
⊗

C∞(M)
SC∞(M)

(
Ω1(M)

)
⊗

C∞(M)

i=1...2g⊗

C∞(M)
Ω•(M)[•]

where V [n] is the graded space (V [n])i = V i+n (i.e. with cohomological degree shifted
down by n) and SC∞(M)(W ) is the symmetric graded algebra of a graded C∞(M)-
module W . In terms of graded-geometry the above isomorphism is equivalent to saying
that H F(F) is (equivalent to) the algebra of functions of the graded manifold

H F(F) ∼= T [2](M)⊕
2g⊕

i=1

T [1]M.

We now study a homotopical strengthening of the locally constant condition. We
said that a factorization algebra on X is strongly locally constant if the natural map
F(U ) → F(V ) is a quasi-isomorphism when U ⊂ V are contractibles. Let A be a
CDGA; we say that a factorization algebra F is strongly constant of type A, if there
exists a natural quasi-isomorphism F(U ) → A for any contractible U . Here, natural
means, that for any pairwise disjoint contractible open subsets U1, . . . ,Un ∈ V of
a contractible open subset V ∈ X , the following diagram (similar to diagram 12) is
commutative in k-Mod∞
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F(U1)⊗ · · · ⊗ F(Un)

��

μU1,...,Un ,V �� F(V )

��
A
⊗n

m(n)
�� A

Example 10. The factorization algebras given by Theorem 4 are strongly constant of
type A.

Example 11. Let X be a manifold, A a CDGA and p∗(A|N X ) be the factorization algebra
on X constructed in Example 7. Corollary 9 implies that p∗(A|N X ) is a strongly constant
factorization algebra.

Now let X be a topological space that embeds as a retract i : X
↪→← U X : r , where U X

is an open subset of some R
n (where n can be infinite). Then, similarly to the manifold

case, the CDGA A yields a factorization algebra A on R
n and a factorization algebra

r∗(A|U X ) on X . The above paragraph implies that A is strongly constant. Further if the
fibers of r are contractible, then r∗(A|U X ) is strongly constant of type A.

We have the following analogue of Corollary 9 for strongly constant factorization
algebras on a topological space that admits a factorizing good cover (for instance those
given by Example 11 when X is a CW-complex)

Corollary 10. Let X be a topological space with a factorizing good cover and A be a
CDGA. Let F be a factorization algebra on X.

1. AssumeF is strongly constant of type A, then one has a natural equivalence H F(F) ∼=
C H•X (A) in k-Mod∞.

2. Assume that there is a basis B of open sets which is a factorizing good cover and
that F is a factorization algebra which satisfies the strongly constant condition (of
type A) with respect to opens in B, i.e., there exists a natural quasi-isomorphism
F(U )→ A for U ∈ B (which is automatically contractible). Then, there is a natural
equivalence of factorization algebras F ∼= CHX (A) between F and the Hochschild
prefactorization algebra given by Lemma 2 (in particular, F is strongly constant of
type A).

Proof. The first assertion is proved as in Corollary 9 using a factorizing good cover U
for X instead of Ballg(X) (and using a proof similar to the proof of Theorem 4 to get
that

⊕
k>0

⊕
α1,...,αk∈PU CHX (α1, . . . , αk)[k−1] ∼= C H•X (A)). Since any factorization

algebra is uniquely defined by its restriction to a factorizing basis, the second assertion
follows easily from the first one applied to all V ∈ B.

As a further corollary to Theorem 4, we can extend the Hochschild construction
as a pullback and pushforward of factorization algebras in a particular setting. The
pushforward construction of factorization algebras was described above Corollary 8.
Following [8], there is also a pullback construction for factorization algebras given for
an open immersion f : N → M . For a factorization algebra F on M , let f ∗F be the
factorization algebra on N given by f ∗F(U ) = F( f (U )) for all open subsets U ⊂ N
such that f |U : U → f (U ) is a homeomorphism, extended to a full factorization
algebra.

Now, assume that X,Y, Z are topological spaces, and that there is an open immersion
of X × Y ↪→ Z of X × Y into Z . For a factorization algebra F on Z , we define



Higher Hochschild Homology, Chiral Homology and Factorization Algebras 665

the Hochschild factorization algebra with respect to X to be the factorization algebra
CHX (F) of F on Y given by

CHX (F) := (prY )∗ ◦ f ∗(F), where Y
prY←− X × Y

f−→ Z .

Here prY : X×Y → Y denotes the projection to Y . This construction induces a functor,
called CHX : FacZ (C DG A∞) → FacY (C DG A∞), F �→ (prY )∗ ◦ f ∗(F) which
satisfies the following naturality condition.

Corollary 11. Assume that X, Y and Z all admit a basis of open sets which is a fac-
torizing good cover. Under the functors CHY : C DG A∞ → FacY (C DG A∞) and
CHZ : C DG A∞ → FacZ (C DG A∞) from Corollary 8, the functor CHX represents
the functor C H•X on C DG A∞, i.e., the following diagram commutes:

C DG A∞
C H•X ��

CHZ

��

C DG A∞
CHY

��
FacZ (C DG A∞)

CHX �� FacY (C DG A∞)

Proof. Let A ∈ C DG A∞ and W be a basis and factorizing good cover by open subsets
U × V ⊂ X × Y such that U, V are contractible and f |U×V : U × V → f (U × V ) is
a homeomorphism. In particular, for U × V ∈W , we have natural equivalences

f ∗(CHZ (A))(U × V ) ∼= CHZ (A)( f (U × V )) ∼= C H•f (U×V )(A)
∼= A

since f (U×V ) is contractible. Hence Corollary 10 implies that f ∗(CHZ (A)) is strongly
constant of type A and further that, for any contractible open U ⊂ Y ,

CHX (CHZ (A))(U ) ∼= f ∗(CHZ (A))(X ×U ) ∼= C H•X×U (A) ∼= C H•X (A).

Thus CHX (CHZ (A)) is a strongly constant factorization algebra on Y of type C H•X (A),
hence, by Corollary 10.(2), is naturally equivalent to CHY (C H•X (A)).

4.3. Locally constant factorization algebras and En-algebras. If A is a locally constant
factorization algebra on M × Dn−m , pushforward along the natural projection π1 :
M × Dm−n → M induces a factorization algebra π1∗(A) on M , which is locally
constant. Given a monoidal (∞, 1)-category C and a manifold X , we denote by Faclc

X (C)
the (sub)category of locally constant factorization algebra on X taking value in C.

We recall the following Proposition which is essentially due to Lurie [24] and
Costello [9].

Proposition 10. The pushforward along p : R
n → pt induces an equivalence of

(∞, 1)-categories

p∗ : Faclc
Rn (k-Mod∞)

�−→ En-Alg∞.
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Proof. We sketch the proof. Details will appear elsewhere. Restricting to open sets home-
omorphic to an euclidean disk, we obtain a tautological functor f or :
Faclc

Rn (k-Mod∞) → N (Disklc(Rn))-Alg where N (Disklc(Rn))-Alg stands for the
full subcategory spanned by the locally constant N (Disk(Rn))-algebras in the sense
of [24, Definition 5.2.4.7]. By [24, Theorem 5.2.4.9 and Example 5.2.4.3], the latter
category is equivalent to En-Alg∞ and, under this equivalence, f or(F) identifies with
the global section F(Rn) ∼= p∗(F) for any locally constant factorization algebra F .

We define an inverse to p∗ as follows. Let CVX be the set of open convex subsets of
R

n , which is a factorizing basis. To an En-algebra E , one associates a CVX -factorization
algebra E defined by C �→ E(C) := E . As shown in [8], the CVX -factorization algebra E
has an unique extension to a factorization algebra on R

n iff it satisfies the Čech condition
Č(U , E) → E(U ) for any factorizing subcover U ⊂ CVX of a convex open U . This
follows again from [24, Section 5]. Indeed, by Theorem 5.3.4.10 in [24], the En-algebra
E gives rise to a factorizable cosheaf E on the Ran space Ran(Rn). It is easy to check
that the factorizing cover U gives rise to a cover of Ran(U ) precisely given by PU .
Since every open set in U is convex, and

∫
C E ∼= E for any convex open subset C ⊂ U ,

by [24, Theorem 5.3.4.14], we get a canonical equivalence Č(PU , E)
�−→ Č(U , E)

which makes the diagram

E(Ran(U ))

�
��������������� Č(PU , E)

��� � �� Č(U , E)

		�����������

E

commutative (the top left equivalence follows from the fact that E is a cosheaf on
Ran(U )). Thus, Č(U , E)→ E(U ) is an equivalence and E a CVX -factorization algebra.
We denote q(E) := E the induced factorization algebra over R

n .
We need to check that q(E) is locally constant. It is sufficient to prove that for

any open D homeomorphic to an euclidean disk, the map E(D) → E(Rn) ∼= E is an
equivalence. This follows from the Kister–Mazur Theorem [24, Theorem 5.2.1.5] which
yields an isotopy between the inclusion D ↪→ R

n and an homeomorphism of R
n .

By construction, p∗ ◦ q(E) = p∗(E) ∼= E . Conversely, F being locally constant,
for any convex open set C , we have a canonical equivalence F(C) ∼= F(Rn). It follows
that the CVX -factorization algebra defined by p∗(F) is canonically equivalent to the
restriction of F to convex open sets. By uniqueness of the extension of factorization
algebra defined on a factorization basis, q ◦ p∗ ∼= id.

Lemma 4. Let M be a manifold and π1 : M ×R
d → M the canonical projection. The

pushforward by π1 induces an equivalence of (∞, 1)-categories

π1∗ : Faclc
M×Rd (k-Mod∞)

�−→ Faclc
M (Ed-Alg∞)

In particular, if F ∈ Faclc
M×Rd (k-Mod∞), then its factorization homology

H F(F ,M × R
d) = p∗(F)(pt) ∼= p∗ ◦ π1∗(F)(pt) ∼= H F(π1∗(F),M)

is an Ed -algebra (here p : X → pt is the unique map).
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Proof. Letπ2 : M×R
d → R

d be the second canonical projection. For any open set U in
M , the restriction A|U×Rd is a (locally constant) factorization algebra and π2∗(A|U×Rd )

is a factorization algebra on R
d . Note that π2∗(A|U×Rd ) is locally constant. Indeed, let B

be any (open, homeomorphic to a) ball B ⊂ R
n and denote Ballg(U ) the set of geodesic

convex open sets in U (for a choice of a metric on U ). Then the family Ballg(U )× B is
a factorizing cover of U × B. Since A is locally constant, for any inclusion B ↪→ B̃ of
open sets (homeomorphic to) balls and geodesic convex open set O in U , the structure
map A(O × B)→ A(O × B̃) is a quasi-isomorphism. Using that A is a factorization
algebra we get

π2∗(A|U×Rd )(B) ∼= A(U × B)

∼= Č(Ballg(U )× B,A)
∼=

⊕

k>0

⊕

α1...αk∈PBallg(U )

⊗

i1∈α1,...ik∈αk

A((Ui1 ∩ · · · ∩Uik )× B)[k − 1]

∼=
⊕

k>0

⊕

α1...αk∈PBallg(U )

⊗

i1∈α1,...ik∈αk

A((Ui1 ∩ · · · ∩Uik )× B̃)[k − 1]

∼= Č(Ballg(U )× B̃,A) ∼= π2∗(A|U×Rd )(B̃),

which proves that π2∗(A|U×Rd ) is locally constant (since the above composition is
the structure map π2∗(A|U×Rd )(B) → π2∗(A|U×Rd )(B̃)). Hence, by Proposition 10,
π2∗(A|U×Rd ) is equivalent to an Ed -algebra AU and there are canonical equivalences

AU ∼= π2∗(A|U×Rd )(R
d) ∼= A(U × R

d).

Sinceπ1∗(A)(U ) = A(U×R
d) ∼= AU , it follows that for each open subset U ∈ Op(M),

π1∗(A)(U ) is an Ed -algebra. Since A is a (pre)factorization algebra on M × R
d , the

structure maps

μU1,...,Uk ,V : π1∗(A)(U1)⊗ · · · ⊗ π1∗(A)(Uk) ∼= A(U1 × R
d)⊗ · · · ⊗A(Uk × R

d)

−→ A(V × R
d) ∼= π1∗(A)(V )

are maps of Ed -algebras. Further, since A is a factorization algebra and locally constant,
it follows that π1∗(A)(U ) belongs to Faclc

M (Ed-Alg∞).
Now we build an inverse of π1∗. Consider B in Faclc

M (Ed-Alg∞). For any U ∈
Op(M), B(U ) is an Ed -algebra (compatible with the prefactorization algebra struc-
ture map) and thus defines canonically a locally constant factorization algebra on R

d :
Op(Rd) � V �→ B(U )(V ). A basis of neighborhood of M × R

d is given by the prod-
ucts U × V ∈ Op(M) × Op(Rd). In order to extend B to a factorization algebra on
M × R

d , it is enough (by [8]) to prove that the rule (U × V ) �→ B(U )(V ) defines
an Op(M) × Op(Rd)-factorization algebra where Op(M) × Op(Rd) is the cover of
M×R

d obtained by taking the products of open sets. The latter follows from the fact that
the Ed -algebra structure is natural with respects to the inclusions μU1...,Un ,Ũ

of pairwise

disjoint open subsets of Ũ ∈ Op(M). Hence the rule (U × V ) �→ B(U )(V ) extends to
give a factorization algebra E(B) on M×R

d . It is immediate by construction that E(B)
is locally constant and functorial in B.

It remains to prove that E : Faclc
M (Ed-Alg∞) → Faclc

M×Rd (k-Mod∞) is a nat-
ural inverse to π1∗. Recall from above that the Ed -algebra structure on π1∗(A)(U ) is
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the one of the Ed -algebra A(U × R
d), which corresponds to the factorization algebra

V �→ π2∗(A|U×Rd (V )) ∼= A(U × V ). It follows that there is a natural equivalence
E

(
π1∗(A)

)(
U × V

) ∼= A(U × V ) in k-Mod∞. Further there are natural equivalences
(in Ed-Alg∞) π1∗(E(B))(U ) ∼= E(B)(U × R

d) ∼= B(U ). The lemma now follows.

Let A be a locally constant factorization algebra on a manifold M and assume that
there is a codimension 1 submanifold (possibly with corners) N of M with a trivialization
N × D1 of its neighborhood such that M is decomposable as M = X ∪N×I Y where
X,Y are submanifolds (with corners) of M glued along N×D1. According to Lemma 4
above H F(A|N×D1) is an E1-algebra.

Lemma 5 (Excision for locally constant factorization algebras). H F(A|X )and H F(A|Y )
are right and left H F(A|N×D1)-modules and further,

H F(A) ∼= H F(A|X )
L⊗

H F(A|N×D1 )
H F(A|Y ).

Proof. Since A is locally constant, the canonical map A
(

X \ (
N × [t, 1)

))→ A(X)
is an equivalence for all t ∈ D1. This follows, since for any open set of the form
U×(a, b) ⊂ N×D1, where U is homeomorphic to a ball, there is a natural equivalence
A(U × (a, b)) ∼= A(U × (a′, b′)) for any a′ < a < b < b′ and that the open sets of
the form U × (a, b) form a factorizing cover of N × D1. Similarly, we have natural

equivalences of E1-algebras A(N × (a, b))
�−→ N × D1 (as in the proof of Lemma 4).

Let U be an open set in X and V1, . . . , Vk be (not necessarily disjoint) open subsets
in N . Then for any sequence of pairwise disjoint open intervals I0, I1, . . . , Ik in D1

(where we assume I0 = (−1, t0) for some t0 ∈ D1), the open Vi × Ii (i = 1 . . . k) are
pairwise disjoint and disjoint from X − \(N × [t0, 1). To shorten notation, we denote
Xt0 := X \ (

N × [t0, 1)
)

The structure maps of a prefactorization algebras yield a map

A(X)⊗A(N × D1)⊗n



�����������������������������

∼= �� A(Xt0)⊗A(N × I1)⊗ · · · ⊗A(N × Ik)

μXt0 ,N×I1...N×Ik ,X

��
A(X)

This map is natural with respect to the prefactorization algebra structure of A and
AN×D1 , hence induces a structure of right H F(AN×D1) ∼= A(N × D1)-module on
H F(A|X ) ∼= A(X). A similar argument applies to H F(A|Y ).

The open sets Xt0 , Ys := Y \(N×(−1, s]) and N×(a, b) (where t0, s, a < b ∈ D1)
forms a factorizing cover N of M and we also denote Ñ the induced factorizing cover
of N × D1. A finite sequence of pairwise disjoint open sets in N is just a sequence
Xto, N × (t1, t2), . . . , N × (tm, tm+1), Ytm for−1 < t0 < · · · < tm+2 < 1. Note that the

complexes A
(

N × (ti , ti+1)
)

are canonically equivalent to π2∗(A)
(
(ti , ti+1)

)
, where

π2 : N × D1 → D1 is the projection on the second factor. Since A(Xt0)
∼= A(X),

A(Ytm+2)
∼= A(Y ), we have

H F(A) ∼= Č(N ,A) ∼= A(X)⊗ Č(Ñ ,A|N×D1)⊗A(Y ).
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Note that the canonical map p : M → pt factors as M
q→ [−1, 1] → pt where q

is the map identifying X \ (N × D1) with {−1}, Y \ (N × D1) with {1} and pro-
jecting N × D1 onto D1 = (−1, 1) by the second projection. Then the factorization
homology H F(A) ∼= p∗(A) ∼= p∗

(
q∗(A)

)
identifies with the factorization homology

of the locally constant factorization algebra q∗(A) on the closed interval [−1, 1] and
further Č

(
N ,A

) ∼= Č
(
I, q∗(A)

)
where I is the (factorizing) cover of [−1, 1] given by

the intervals. Thus we are left to the case of a (locally constant) factorization algebra
on [−1, 1] which assign the E1-algebra A(N × D1) to any open interval (a, b), and
the modules A(X) to [−1, t) and A(Y ) to (s, 1] (with respect to the modules struc-
tures defined in the beginning of the proof). It is stated in [8,9] that its factorization
homology is the (derived) tensor product A(X)⊗L

A(N×D1)
A(Y ). Indeed, on can prove

that the Čech complex Č
(
I, q∗(A)

)
is equivalent to the two-sided Bar construction

Bar
(
A(X),A(N × D1),A(Y )

)
as we now explain.

First, by strictification we can replace the E1-algebra and modules by differential
graded associative ones so that we are left to the case of a factorization algebra F
on [−1, 1] which, to any open interval (u, s) ⊂ (−1, 1) associates F

(
(u, s)

) = A,
to [−1, t) ⊂ [−1, 1) associates F

([−1, t)
) = M and to (s, 1] ⊂ (−1, 1] associates

F
([−1, t)

) = N , where A is a differential graded algebra, and N , M respectively
left and right dg-A-modules. We wish to find a factorizing cover U of [−1, 1] such
that Č

(
U ,F)

)
is quasi-isomorphic to the two sided Bar construction Bar

(
M, A, N

)
.

Since Bar
(
M, A, N

) ∼= M ⊗A Bar
(

A, A, A
) ⊗A N , it is enough to prove the re-

sult when N , M are A endowed with its canonical dg-modules structures, which we
now assume. Let U be the factorizing cover given by all opens Ut := [−1, 1] \ {t}
where t ∈ [−1, 1] (in other words by the complement of a singleton). Any two such
opens intersects non-trivially so that the set PU are singletons. We have F(Ut ) ∼=
F([−1, t)) ⊗ F((t, 1]) which is A ⊗ A if t 
= ±1 and is A ⊗ k or k ⊗ A if t = 1
or t = −1; more generally, F(Ut0 , . . . ,Utn ,U±1) ∼= F(Ut0 , . . . ,Utn ) ⊗ k. Further,
if −1 < t0 < · · · < tn < 1, then F(Ut0 , . . . ,Utn )

∼= A ⊗ A⊗n ⊗ A and the struc-
ture map F(Ut0 , . . . ,Utn ) → F(Ut0 , . . . , Ûti , . . . ,Utn ) is given by the multiplication
a0 ⊗ · · · ⊗ an+1 �→ a0 ⊗ · · · (ai ai+1)⊗ · · · ⊗ an+1. Hence the Čech complex Č

(
U ,F

)

is a (parametrized by t) version of the two sided Bar construction with coefficients in
A and can be shown to be quasi-isomorphic to A similarly. To see this, note that the
multiplication in A induces canonical maps

F(Ut ) ∼= F([−1, t))⊗ F((t, 1])→ F([−1, 1))⊗ F((−1, 1]) ∼= A ⊗ A→ A

such that the induced composition
⊕

Ur ,Us∈PU
F(Ur ,Us)[1] → ⊕

Ut∈PU
F(Ut )[0] → A is

null. Hence, we get a canonical map of chain complexes η : Č
(
U ,F

)→ A which we
claim is a quasi-isomorphism. Indeed, the map κ : A ∼= F(U1) ↪→ ⊕

Ut∈PU
F(Ut )[0] ↪→

Č
(
U ,F

)
is a retract of η, i.e., η◦κ = idA. There is an homotopy operator h on Č

(
U ,F

)

defined, on F(Ut0 , . . . ,Utn )[n], by

n∑

i=0

(−1)i st0,...,tn
i : F(Ut0 , . . . ,Utn )[n] −→

⊕

Ur0 ,...Urn+1∈PU
F(Ur0 , . . . ,Urn+1)[n + 1]
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where, for 0 ≤ i ≤ n−1, st0,...,tn
i is the (suspension of the) identity map F(Ut0 , . . . ,Utn )[n] → F(Ut0 , . . . ,Utn )[n + 1] ∼= F(Ut0 , . . . ,Uti ,Uti , . . . ,Utn )[n + 1] followed by

the inclusion in the Čech complex while the map st0,...,tn
n is the (suspension of the)

identity map F(Ut0 , . . . ,Utn )[n] → F(Ut0 , . . . ,Utn )[n +1] ∼= F(Ut0 , . . . ,Utn ,U1)[n +
1] (followed by the inclusion in the Čech complex). It is straightforward that dh + hd =
id−κ ◦η (where d is the differential on Č

(
U ,F

)
) which proves that η : Č(

U ,F
)→ A

is a quasi-isomorphism hence, that F([−1, 1]) is the two-sided bar construction A ∼=
Bar(A, A, A) which concludes the proof.

5. Relationship with Topological Chiral Homology

5.1. Review of topological chiral homology à la Lurie. Let A be an En-algebra and M
a manifold of dimension m which is (stably) n-framed, that is a manifold of dimension
m equipped with a framing of M × Dn−m . The topological chiral homology of M
with coefficients in A was defined in [11,24,25] and will be denoted

∫
M A. Note that

this concept does depend on the framing in general, even though it is not explicit in
the notation5. Further

∫
M A is an En−m-algebra in general, see [24,25]. We refer to the

above references as well as to [1,2,11] for a precise definition. If X is a manifold, let
N (Disj(X)) be the∞-category associated to the poset given by finite disjoint union of
open sets in X homeomorphic to an euclidean disk, ordered by inclusion. According to
Lurie [24, Remark 5.3.2.7] we have, roughly, that

Definition 4. Let M be an n-framed manifold of dimension m and A an En-algebra.
The topological chiral homology

∫
M A is the colimit lim−→ψM with ψM : N (Disj(M ×

Dn−m))→ k-Mod∞ the diagram given by the formula

ψM (V1 ∪ · · · ∪ Vn) =
∫

V1

A ⊗ · · · ⊗
∫

Vn

A ∼= A ⊗ · · · ⊗ A (13)

where V1, . . . , Vn are disjoint open sets homeomorphic to a ball (the latter equivalence
follows from [24, Example 5.3.2.8]).

For our purpose, among the properties satisfied by
∫

M A, we will mainly need the
gluing property given in Proposition 11 below and the fact that

∫
pt A ∼= A. [25, Theorem

4.1.24].

Remark 12. The models for En-algebras that we are considering are given by En-(∞-)
operads as introduced in [24, Section 5.1] in the symmetric monoidal ((∞, 1)-)category
(k-Mod∞,⊗). The category of En-algebras is symmetric monoidal ([24, Section 5.1.5],
[23, Section 1.8]) and, furthermore, there is a commutative diagram of operads

E1
� � ��

j1 ����������������� E2
� � ��

j2

����������
. . . . . . �

� �� En
� � ��

jn

								
. . .

Com

(14)

where Com is the operad of commutative (differential graded) algebras such that all
maps are monoidals. Note that most models for En-algebras come with such monoidal

5 note that we also do not write the factor Dn−m in the notation.
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properties and also as nested sequences (for instance, this is the case for the models
based on the Barratt–Eccles operad [4]). In particular, a commutative differential graded
algebra A is naturally an Ed -algebra for any integer d. We write j∗d (A) for the Ed -algebra
structure on A induced by the map of operads jd : Ed → Com whenever we want to
put emphasis on this Ed -algebra structure.

Likewise, any En-algebra A is naturally an Ed algebra for d ≤ n. Furthermore,
we say that an A-module M has a compatible structure of Ed -algebras (d ≤ n) if the
structure maps of the module structure are maps of Ed -algebras, where A is equipped
with its natural Ed -algebra induced by the diagram of operads (14).

Remark 13. With the exception of Sect. 5.3.2, this paper only deals with a fixed En-
algebra A, which, when M is framed, is an example of a locally constant N (Disk(M))-
algebra in the sense of Lurie [24], and for which topological chiral homology can be
defined, too. In particular, we will show that A also defines canonically a locally constant
factorization algebra on M in the sense of Costello and Gwilliam [8,9]. This also means,
that

∫
M A computes the global sections of a natural cosheaf defined on the Ran space of

M (see [24, Section 5.3.2]).

One of the main consequences of the interpretation [25] of topological chiral ho-
mology as an invariant produced by an (extended) topological field theory in some
appropriate monoidal (∞, n)-category is the following excision property.

Proposition 11 (Gluing for topological chiral homology). Let M be an n-framed mani-
fold (possibly with corners) of dimension m, (i.e. M×Dn−m is framed). Assume that there
is a codimension 1 submanifold (possibly with corners) of M of the form N × I m−1− j

(for some 0 ≤ j ≤ m − 1) with a trivialization N × I m− j of its neighborhood and that
M is decomposable as M = X ∪N×I m− j Y where X,Y are submanifolds (with corners)
of M glued along N × I m− j . We endow X,Y and N with the n-framing induced from
M. Let A be an En-algebra. Then

–
∫

N A is an En− j -algebra.
–

∫
M A,

∫
X A, and

∫
Y A are En−m-algebras. Further

∫
X A and

∫
Y A are also modules

over the En− j -algebra
∫

N A.
– The above module and algebra structures are compatible. Note that this uses the once

and for all fixed telescopic sequence (14) of models for En-operads.
– There is a natural equivalence of En−m-algebras

∫

X
A

L⊗∫
N A

∫

Y
A
�−→

∫

M
A.

Proof. This is explained in [24, Section 5.3.4] and [25, Section 4.1], also see the proof
of [11]. It is also an immediate consequence of Lemma 8 below, in the case where the
manifolds are framed since, for a n-framed manifold X , an En-algebra yields canonically
an E[X ]-algebra.

Lemma 6. Let A be an En-algebra and (Mi )i∈I a family of n-framed manifolds of
dimension m. There is a natural equivalence of En−m-algebras

lim−→
F ⊂ J
F finite

⎛

⎝
⊗

f ∈F

∫

M f

A

⎞

⎠ �−→
∫

∐
i∈I Mi

A.
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Proof. We set M = ∐
i∈I Mi and, for any finite subset F of I , we denote MF :=∐

f ∈F M f . The inclusion MF ⊂ M yields a canonical map N (Disj(MF × Dn−m))→
N (Disj(M × Dn−m)). Since an object in N (Disj(M × Dn−m)) is a finite disjoint
union of connected open sets in M , every object in N (Disj(M × Dn−m)) lies in some
N (Disj(MF × Dn−m)) for a finite F . Hence we have an equivalence N (Disj(M ×
Dn−m)) ∼= lim−→

F finite

N (Disj(MF × Dn−m)) of∞-categories and, by Definition 4, an nat-

ural equivalence
∫

M
A ∼= lim−→ψM ∼= lim−→

F finite

ψMF
∼= lim−→

F finite

∫

MF

A.

Now the lemma follows from [24, Theorem 5.3.3.1] which gives a natural equivalence(⊗
f ∈F

∫
M f

A
) �→ ∫

MF
A for all finite F .

5.2. Locality axiom and the equivalence of topological chiral homology with higher
Hochschild functor for CDGAs. In view of Proposition 11 and Theorem 1, Morse theory
(or any triangulation) suggests the following result, which is the main result of this
section.

Theorem 5. Let M be a manifold of dimension m endowed with a framing of M×Dk and
A be a differential graded commutative algebra viewed as an Em+k-algebra. Then, the
topological chiral homology of M with coefficients in A, denoted by

∫
M A is equivalent

to C H•M (A) viewed as an Ek-algebra (in other words to j∗k (C H•M (A))).

In particular, topological chiral homology
∫

M A with coefficient in a CDGA A is always
equivalent to a CDGA and is defined for any manifold M .

This theorem is similar to [24, Theorem 5.3.3.8] (with the difference that we assume
M to be smooth and keep track of the Ek-algebra structure). In this section, we wish to
prove it by using a straightforward geometrical approach based on the gluing property.
Indeed, the key idea is to use handle decomposition which is very appropriate to deal
with manifolds and the definition of topological chiral homology. However, note that,
with respect to Hochschild chains, a representation of M as a CW complex is already
nice enough.

Before proving Theorem 5, we recall a few facts on the handle decompositions. Let
M be a smooth manifold of dimension m. A handle decomposition of M is a sequence
∅ ⊂ M0 ⊂ · · · ⊂ Mm = M , where each M j is obtained by attaching j-handles to
M j−1, see [27]. That is gluing a copy of H j = D j × Dm− j using the attaching map
S j−1×Dm− j → ∂M j−1 which is assumed to be an embedding. In particular all handles
of same dimension are attached using diffeomorphisms.

We can achieve such a handle decomposition for M using Morse theory as follows.
Let f : M → R be a Morse function with critical points p1, . . . , pk numbered in a way
that f (p1) < · · · < f (pk). Choose a0, . . . , ak such that a0 < f (p1) < a1 < · · · <
ak−1 < f (pk) < ak . Now it is sufficient to note that f −1([ai−1, ai ]) is diffeomorphic
to attaching a j-handle to f (ai−1)× [0, 1], where j is the index of the critical point pi ,
i.e. the number of the negative eigenvalues of the Hessian of f at that critical point. For
example a torus with the height function is first given by attaching a D0 × D2 to the
empty set, then attaching a D1× D1 (think of it as a thin ribbon) to the boundary of the
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previous D2. Then attaching another ribbon to the boundary of the previous ribbon, and
the finally attaching a D2 × D0 to what has been obtained along the boundary.

Lemma 7. Let M be an n-framed manifold and N be an n-framed manifold obtained
from M by attaching a countable sequence of handles (Hi )i∈N. For any n ∈ N, we write
Xk for the result of attaching the first k-handles to M. For any En-algebra A, there is a
natural equivalence

lim−→
k∈N

∫

Xk

A
�−→

∫

N
A.

Proof. We may assume dim(M) = n. The maps Xk → Xk+1 yield a diagram

N (Disj(M))→ N (Disj(X1))→ · · · → N (Disj(Xk))→ · · · → N (Disj(N )) (15)

of faithfull maps, hence canonical maps lim−→
k∈N

N (Disj(Xk))→ N (Disj(N )) and

lim−→
k∈N

∫

Xk

A ∼= lim−→
k∈N

(
lim−→ψXk

)→ lim−→ψN ∼=
∫

N
A (16)

(using the notation introduced in Definition 4). Note that lim−→
k∈N

(
lim−→ψXk

)
can be iden-

tified with the colimit lim−→ ψ̃N given informally by the diagram

ψ̃N (V
k
1 ∪ · · · ∪ V k

j ) =
∫

V k
1

A ⊗ · · · ⊗
∫

V k
j

A

where the V k
i are disjoint open subsets of Xk homeorphic to a ball (here k is not fixed).

Since A is a fixed En-algebra, it is in particular an E(X)-algebra (in the sense of [24,
Section 5.2.4]) for any n-framed manifold X . In particular, by [24, Theorem 5.2.4.9] (also
see Proposition [24, Proposition 5.3.2.13]), if U ⊂ V are two open subsets of X which
are homeomorphic to a ball, then the induced map

∫
U A→ ∫

V A is an equivalence.
Now, let V be an open subset of N which is homeomorphic to a ball. Since N =

lim−→
k∈N

Xk , there exists a k such that V ∩ Xk is a non-empty open subset of Xk , and

thus contains an open ball V k in Xk which is lying in V too. In particular the natural
map

∫
V k A → ∫

V A is an equivalence. It follows that, given a finite set V1, . . . , Vn of
open homeomorphic to a ball in N , we can find an integer k big enough and open sets
V k

1 ⊂ V1,...., V k
n ⊂ Vn in Xk which are homeomorphic to a ball, yielding a natural

equivalence

ψ̃N (V
k
1 , . . . , V k

n ) =
∫

V k
1

A ⊗ · · · ⊗
∫

V k
n

A ∼=
∫

V1

A ⊗ · · · ⊗
∫

Vn

A = ψN (V1, . . . , Vn).

This proves the cofinality of the functor N (̃Disj(N )) ↪→ N (Disj(N )) induced by the
natural inclusion. Here we have denoted D̃isj(N ) the partially ordered set of open subsets
of N which are homeomorphic to F×Rn for a finite set F and included in some Xk (where
k is not fixed). Passing to colimits, we get that the map lim−→

k∈N

(
lim−→ψXk

) ∼= lim−→ ψ̃N →

lim−→ψN is an equivalence and thus the canonical map (16) is an equivalence as well.
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Proof (Proof of Theorem 5). Let us sketch the key idea of the proof first: by the value on
a point axiom, both topological chiral homology and higher Hochschild chains agree on
a point and further on any disk Dk (up to neglect of structure). Using handle decompo-
sitions, one can chop manifolds on disks which are glued along their boundaries. Since
both topological chiral homology and higher Hochschild chains satisfy a similar gluing
axiom (and also behave the same way under disjoint unions), one then can lift the natural
equivalence for disks to any manifold using handle decompositions. We now make the
above scheme precise.

Assume M is compact. Let us choose a generic Morse function on M and the
associated handle decomposition ∅ ⊂ M0 ⊂ · · · ⊂ Mm = M of M . Then ∅ ⊂
M0 × Dk ⊂ · · · ⊂ Mm × Dk = M × Dk is a handle decomposition of M × Dk .
That is (M × Dk) j = M j × Dk where we replace each j-handle H j = D j × Dm− j

attached to M j−1 by the j-handle D j × Dm+k− j ∼= D j × (
Dm− j × Dk

)
attached to

M j−1 × Dk = (M × Dk) j−1. The (m + k)-framing of M induces an (m + k)-framing
of each M j × Dk = (M × Dk) j .

By homotopy invariance of Hochschild chains, one has an equivalence of CDGAs
C HM×Dd (A) ∼= C HM (A) (for any integer d). Further, from diagram (14) we deduce
that, for any CDGA B, one has j∗k (B) ∼= ι∗d( j∗k+d(B)) where ιd : Ek ↪→ Ek+d is the
natural map. Since, for any Em+k-algebra B, one has

∫
Dm B ∼= B viewed as an Ek-

algebra, the result of Theorem 5 holds for all disks.
We now prove by induction that it holds for all ((m + d)-framed) spheres Sm and

Em+d -algebra A. For S0 = pt
∐

pt , it follows from Theorem 1 and [24, Theorem
5.3.3.1] that

∫
S0 A ∼= A ⊗ A ∼= C HS0(A) (as Ed -algebras). Now, assume the result for

Sm−1 and m ≥ 1. We have a decomposition of the m-sphere Sm as Sm ∼= Dm ∪Sm−1 Dm

as in the assumption of Proposition 11. Since this decomposition is also an homotopy
pushout, it follows from the induction hypothesis, Proposition 11 and Theorem 1.(3)
that there are natural equivalences

∫

Sm
A ∼= A

L⊗∫
Sn−1 A

A ∼= C H•Dm (A)
L⊗

C H•
Sm−1 (A)

C H•Dm (A) ∼= C H•Sm (A)

of Ed -algebras which finishes the induction step.
Clearly, M0 is a disjoint union M0 = ∐

I0
Dm of finitely many m-dimensional balls

(here I0 is the set indexing the various disks in M0). Using again that, for any Em+k-
algebra B, one has

∫
Dm B ∼= B viewed as an Ek-algebra, we get a natural equivalence

of Ek-algebras
∫

M0
A ∼= ⊗

I0
j∗k (A) ∼= j∗k (

⊗
I0

A) since
∫

M
∐

N A ∼= ∫
M A ⊗ ∫

N A
by [24, Theorem 5.3.3.1], the set I0 is finite and jk is monoidal (that is commutes
with the diagonals of the Ek-operads). Further C H•Dm (A) ∼= C H•pt (A) ∼= A and, by
Theorem 1.(1) and (2), there is a natural equivalence C H•M0

(A) ∼= ⊗
I0

A of CDGAs.
Hence the theorem is proved for M0.

By assumption M1 is obtained by attaching finitely many 1-handles H1
1 , . . . , H1

i1
(the sequence may be empty) to M0. Choosing appropriate tubular neighborhoods for
the image of ∂D1× Dm−1 in M0 and gluing it with

(
∂D1× Dm−1

)× [0, ε] ∼= (
∂D1×

[0, ε] × Dm−1
) ⊂ H1

1 , we can assume that the result M0 ∪∂D1×Dm−1 H1
1 of attaching

H1
1 to M0 satisfies the assumption of Proposition 11. Then, by Proposition 11 we have

a natural equivalence of Ek-algebras:
∫

M0

A
L⊗∫

∂D1×Dm−1 A

∫

H1
1

A ∼=
∫

M0∪∂D1×Dm−1 H1
1

A. (17)
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By Theorem 1.(3), we also have a natural equivalence of CDGAs (and thus of the
underlying Ek-algebras)

C H•M0
(A)

L⊗
C H•

∂D1×Dm−1 (A)
C H•

H1
1
(A) ∼= C H•

M0∪∂D1×Dm−1 H1
1
(A). (18)

We have already seen that we have natural equivalences C H•M0
(A) ∼= ∫

M0
(A) of Ek-

algebras and similarly for ∂D1 × Dm−1 and D1 × Dm−1 in place of M0 (since those
manifolds are disks). Combining these equivalences with those given by the identi-
ties (17) and (18), we get a natural equivalence

∫

M0∪∂D1×Dm−1 H1
1

A ∼= C H•
M0∪∂D1×Dm−1 H1

1
(A).

Attaching more 1-handles, we inductively get a natural equivalence
∫

M1
A ∼= C H•M1

(A)
of Ek-algebras.

We proceed the same for attaching j ≥ 2-handles (by induction on j). The proof is
identical to the 1-handles case once we notice that there are also a natural equivalence∫
∂D j×Dm− j A ∼= C H•

∂D j×Dm− j (A). The later follows from the natural equivalences
relating topological chiral homology and higher Hochschild chains of spheres (with
value in A) proved above. Indeed, ∂D j × Dm− j ∼= S j−1 × Dm− j and there is a natural
equivalence

∫
S j−1×Dm− j A ∼= i∗m− j

( ∫
S j−1 A

)
where im− j : Ek+1 ↪→ Em+k− j+1 is the

canonical map (neglecting part of the structure). Similarly, there are natural equivalences
C H•

S j−1(A) ∼= C H•
S j−1×Dm− j (A) of CDGAs. It follows, since j∗k+m− j+1

(
C H•

S j−1(A)
) ∼=

∫
S j−1 A, that we get a natural equivalence

j∗k+1(C H•S j−1×Dm− j

(
(A)

) ∼= i∗m− j j∗k+m− j+1

(
C H•S j−1×Dm− j (A)

) ∼=
∫

S j−1×Dm− j
A

which finishes the proof in the compact case.
If M is non-compact, we still have a handle decomposition, but we may have to

attach countable many handles to go from Mi to Mi+1. In particular, we can find an
increasing sequence of relatively compact open subsets Mi = X0 ⊂ X1 ⊂ · · · Xn ⊂
· · · ⊂ ⋃

n≥0 Xn = Mi+1 (for instance by choosing Xn to be the result of attaching the
first n i-handles to Mi ). We wish to prove the result by induction on i . Note first that,
by definition of the Hochschild chain functor and Lemma 6, there is an equivalence (for
the underlying Ek-algebras structures)

C H•M0
(A) ∼= lim−→

F0 ⊂ I0
F0 finite

⎛

⎝
⊗

f ∈F0

C H•Dm (A)

⎞

⎠ ∼= lim−→
F0 ⊂ I0
F0 finite

⎛

⎝
⊗

f ∈F0

∫

Dm
(A)

⎞

⎠ ∼=
∫

M0

A

which proves the result for M0. Now, assume we have an natural equivalence C H•Mi
(A) ∼=

∫
Mi

A. Writing Mi = X0 ⊂ X1 ⊂ · · · Xn ⊂ · · · ⊂ ⋃
n≥0 Xn = Mi+1, by the above

argument for the finite handles case, we have natural equivalences C H•Xn
(A) ∼= ∫

Xn
A
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for all n and thus a commutative diagram

lim−→
n∈N

C H•Xn
(A) � ��

��

lim−→
n∈N

∫
Xn

A

��
C H•Mi+1

(A) ��
∫

Mi+1
A

.

(19)

By Lemmas 7 and Lemma 1, the vertical arrows are equivalences, hence the lower map
is too, which finishes the induction.

Remark 14. A geometric intuition behind Theorem 5 can be seen as follows. Let M be a
dimension m manifold. Since a CDGA A is an En-algebra for any n, the topological chiral
homology

∫
M A is defined for any n-framing of M , and is an En−m-algebra. Further, if

M is n-framed (hence we have chosen a trivialization of M × Dn−m), then M is also
naturally (n + k)-framed for any integer k. Since A is a CDGA, it is an En+k-algebra as
well and thus we could have used the trivialization of M×Dn−m×Dk ∼= M×Dn+k−m

as well to define
∫

M A as an En−m+k-algebra.
It is well known that the transversality theorem implies that two embeddings φ1 :

M → Sn and φ2 : M → Sn of M are isotopic if n is large enough. In particular, for large
n the framing that comes from the embedding into Sn is unique. This unique invariant
of M is called the stable normal bundle. Note that this implies that any two abstract
framings of M × Dk and M × Dl are stably equivalent since, for example, for M × Dk

we can make M sit inside R
n and then the normal bundle of M in R

n is the complement
of the framing of the tangent bundle of M × Dk in R

n × Dk .

Building upon the last remark, we see that the topological chiral homology of an
(m + k)-framed manifold M with value in a CDGA should be equivalent (up to neglect
of structure) to the topological chiral homology of M equipped with the stable normal
framing so that we get

Corollary 12. Topological chiral homology with values in CDGAs is independent of the
framing. In other words, if M1 and M2 are diffeomorphic manifolds equipped respectively
with an (n + k1)-framing and (n + k2)-framing, then there is a canonical equivalence∫

M1
A ∼= ∫

M2
A of Emin(k1,k2)-algebras.

Proof. By Theorem 5, there are natural equivalences
∫

M1
A ∼= C H•M1

(A) of Ek1 -
algebras and

∫
M2

A ∼= C H•M2
(A) of Ek2 -algebras. Since M1 and M2 are diffeomorphic,

we have an equivalence C H•M1
(A) ∼= C H•M2

(A) as CDGAs.

Let us conclude this section by mentioning briefly that Theorem 5 extends to not neces-
sarily framed manifolds. Indeed, there is a version of topological chiral homology with
values in unoriented En-algebras:

Definition 5. The category of unoriented En-algebras, denoted E
O(n)
n -Alg∞ is defined

as the ((∞, 1)-)category of symmetric monoidal functors

E
O(n)
n -Alg∞ := Fun⊗(Diskn, k-Mod∞)

where Diskn is the category with objects the integers and morphism the spaces Diskn(k, �)
:= Emb(

∐
k R

n,
∐
� R

n) of smooth embeddings of k disjoint copies of a disk R
n into �

such copies; the monoidal structure is induced by disjoint union of copies of disks.
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One can form the topological chiral homology
∫

M A, see [11, Definition 3.15] (or [24,
25]) for any manifold M and unoriented En-algebra A.

Remark 15. Definition 5 above is extracted from [11,24]. There is an natural action of
the orthogonal group O(n) on En-Alg∞, see [25]; the category (En-Alg∞)hO(n) of
O(n)-homotopy fixed points is equivalent to the category E

O(n)
n -Alg∞ of Definition 5.

In particular, any CDGA is an unoriented En-algebra.
If one replaces the action of O(n) by SO(n), one recovers the notion of oriented

En-algebras which are commonly known as framed En-algebras in the literature.

A proof similar to the one of 5 yields

Proposition 12. Let M be an n-dimensional manifold (non necessarily framed nor ori-
ented) and A a CDGA, there is an natural equivalence C H•M (A) ∼=

∫
M A (of Ek-algebras

if M ∼= N × R
k with N a dimension n − k manifold).

5.3. Topological chiral homology as a factorization algebra. In this section we give
a precise relationship between factorization algebras, topological chiral homology for
(stably) framed manifolds, and En-algebras.

5.3.1. Topological chiral homology and factorization algebras for n-framed manifolds.
For any manifold M of dimension m which is n-framed (i.e. M × Dn−m is framed) and
En-algebra A, we can consider the topological chiral homology

∫
M A as well as

∫
U A for

every open subset U in M (equipped with the induced framing). Further, if U1, . . . ,Uk
are pairwise disjoint open subsets of V ∈ Op(M), there is a canonical equivalence ([24,
Theorem 3.5.1])

∫

U1

A ⊗ · · · ⊗
∫

Uk

A
�−→

∫

U1∪···∪Uk

A

and a natural map
∫

U1∪···∪Uk
A→ ∫

V A (since any ball in
⋃

Ui is a ball in V ). Composing
these two maps yield natural maps of Em−n-algebras

μU1,...,Uk ,V :
∫

U1

A ⊗ · · · ⊗
∫

Uk

A −→
∫

V
A. (20)

Proposition 13. Let M be an n-framed manifold of dimension m.

1. For any En-algebra A, the rule U �→ ∫
U A (for U open in M) together with the struc-

ture mapsμU1,...,Uk ,V (20) define a locally constant factorization algebra T CM (−, A)
on M, such that T CM (U, A) = ∫

U A is canonically an En−m-algebra for any open
U.

2. The rule A �→ T CM (−, A) defines a functor T CM : En-Alg∞ → FacM
(En−m-Alg∞) which fits into the following commutative diagram

En-Alg∞
∫

M ��

T CM

��

En−m-Alg∞

FacM (En−m-Alg∞)
H F(−)

�������������������
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In other words topological chiral homology computes the factorization homology of
T CM .

The idea behind Proposition 13 is that for any submanifold U of M and En-algebra
A, we can cover U by (a coherent family of) open balls on which A defines a locally
constant factorization algebra. Gluing these data defines a factorization algebra on U
whose homology can be computed from the balls by using the gluing/locality lemma
given above (Lemma 5). Since the topological chiral homology is equivalent to A on
balls and satisfy a similar locality axiom, they agree on U (by an argument similar to
the proof of Theorem 5).

Proof (Proof of Proposition 13). For any open subset V of M , the topological chiral
homology

∫
V A is the colimit lim−→ψV , where ψV : N (Disj(V )) → k-Mod∞ is the

diagram given by the formulaψV (V1∪· · ·∪Vn) =
∫

V1
A⊗· · ·⊗∫

Vn
A where V1, . . . , Vn

are disjoint open sets homeomorphic to a ball (Definition 4). In particular, the structure
maps μU1,...,Un ,V are induced by a map of colimits and it is easy to check that they
are natural with respect to open embeddings and thus define a prefactorization algebra.
Hence T CM (−, A) is functorially (in A) a prefactorization algebra on M with value in
En−m-algebras.

To prove that T CM (−, A) is actually a factorization algebra, the idea is first to use
a handle body decomposition to define another locally constant factorization algebra
FM on M (whose factorization homology H F(F ,M) is equivalent to

∫
M A) and then

to prove that this factorization algebra is equivalent to T CM . Note that by Lemma 4, if
FM is a locally constant factorization algebra on M with value in Ed -algebras such that∫

M A ∼= H F(FM ,M), then we have a natural factorization algebra FM×Rd on M×R
d .

Further H F(FM×Rd ,M × R
d) ∼= ∫

M A as an Ed -algebra.
We start with the case of open balls. By definition of topological chiral homology, for

every manifold B homeomorphic to an m-dimensional ball, there is a natural equivalence∫
B A ∼= A of En−m-algebras (where the En−m-algebra structure of A is by restriction

of structure), see [24,25]. By a result of Lurie [24] (also see [9, Proposition 3.4.1]
or Proposition 10), there is a locally constant factorization algebra FB on B whose
factorization homology is isomorphic to A.

We need to prove that the (locally constant) factorization algebra FB is equivalent
to T CB , i.e., that there are equivalences of prefactorization algebras FB(U ) ∼=

∫
U A

for any open subset U ⊂ B. The proof is identical to the proof of Theorem 5. Indeed,
by Lemma 5, the homology of FB satisfies the excision property and further convert
disjoint union to tensor products. So that we can use the handle decomposition argument
of Theorem 5 to prove that T CB ∼= FB and thus that T CB is a factorization algebra.

If M = ∐l
i=1 Bi is a disjoint union of balls of dimension m, then we also deduce

that T CM is a factorization algebra since
∫

U1
A ⊗ · · · ⊗ ∫

Ul
A ∼= ∫

U1
∐···∐ Ul

A for any

open subsets Ui ⊂ Bi . In particular, this applies to the case of S0 × Dd (d ≥ 0). Now
let M ∼= Sm × Dd (d ≥ 0, m ≥ 1) be framed (we do not assume it is embedded as an
open set of an euclidean space). We work by induction on m so that we may assume the
result of the proposition is known for Sm−1 × Dl .

Assume we have a cover U∪V of a space X and factorization algebras BU , BV ,BU∩V

on U, V and U ∩ V with equivalences BU∩V
�−→ BU |U∩V and BU∩V

�−→ BV |U∩V .
Then we can glue these factorization algebras to define a factorization algebra on X ,
see [8] (note that this descent property can be generalized to arbitrary covers). We wish
to apply this to a decomposition of the m-sphere Sm as Sm ∼= D+ ∪Sm−1×D1 D− where



Higher Hochschild Homology, Chiral Homology and Factorization Algebras 679

D+ and Dm are homeomorphic to framed open balls. By the above analysis, there are
locally constant factorization algebras F+, F− on D+ × Dd and D− × Dd which are
equivalent to T CDm+d (A). Restricting these equivalences to Sm−1 × D1 × Dd , we get
an equivalence

F+|Sm−1×D1×Dd
�−→ F−|Sm−1×D1×Dd .

Since Sm−1 × D1 × Dd is the intersection of D+ × Dd with D− × Dd , we thus get
a locally constant factorization algebra F on their union Sm × Dd . It follows from
Lemma 5 and Proposition 11, that F(Sm × Dd) ∼= ∫

Sm×Dd A as an Ed -algebra. The
equivalences F(U ) ∼= ∫

U A follows for any open proper subset of Sm×Dd as in the proof
of Theorem 5 (using again the excision property of chiral homology and factorization
algebra homology). It follows that T CSm×Dd is a factorization algebra.

The case of general n-framed manifolds M is done similarly. Using a handle decom-
position, induction, and the descent property of factorization algebras, we build a locally
constant factorization algebra FM on M and then prove, as in the proof of Theorem 5,
that, for any open U, FM (U ) ∼=

∫
U M .

To finish the proof, note that the factorization algebra T CM (−, A) is locally constant
by construction (since

∫
B A ∼= A for any ball B) and its factorization homology is

precisely the topological chiral homology of M with value in A. Further T CM (−, A) is
functorial in A since topological chiral homology is.

Remark 16. Theorem 5 follows easily from Proposition 13 and Corollary 9.

5.3.2. Topological chiral homology and factorization algebras for En[M]-algebras. We
now go beyond the notion of n-framed manifolds M , and, more generally, consider
locally constant algebras over an operad En[M], for which there might not exist a globally
defined En-algebra.

Following Lurie [24], topological chiral homology can also be defined for a (locally
constant) family of En-algebras parametrized by the points in M×Dm−n even if M is not
n-framed. Such objects are (locally constant) algebras over an (∞-)operad En[M] :=
E
⊗
M×Dn−m , the operad of little n-cubes in M×Dm−n , see [24, Definition 5.2.4.1] (here M

is still of dimension m, and of course one can choose m = n). By [24, Theorem 5.2.4.9],
we can also describe an En[M]-algebra as a locally constant N (Disk(M × Dn−m))-
algebra. Indeed, by [24, Remark 5.3.2.7] we can extend Definition 4 to an En[M]-algebra
A as well by replacing the last equivalence in (13) by A(V1) ⊗ · · · ⊗ A(Vn). That is,
there is an equivalence

∫

M
A ∼= lim−→

∫

V1

A ⊗ · · · ⊗
∫

Vn

A ∼= lim−→A(V1)⊗ · · · ⊗A(Vn) (21)

where V1, . . . , Vn are disjoint open sets homeomorphic to a ball.

Lemma 8 (Lurie [24]). Let M be a manifold and A be an E[M]-algebra. Assume that
there is a codimension 1 submanifold N of M with a trivialization N × D1 of its
neighborhood such that M is decomposable as M = X ∪N×D1 Y where X,Y are
submanifolds of M glued along N × D1. Then

1.
∫

N×D1 A is an E1-algebra and
∫

X A and
∫

Y A are right and left modules over
∫

N×D1 A.
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2. The natural map
∫

X
A

L⊗∫
N×D1 A

∫

Y
A −→

∫

M
A

is an equivalence.

Proof. The lemma is explained in [24] after Theorem 5.3.4.14. A detailed proof6 is
given in [11, Proposition 3.27] (as well as in [2, Section 3.5]).

The generalization of Proposition 13 to En[M]-algebras is:

Theorem 6. Let M be a manifold of dimension m and d ∈ N an integer.

1. The ruleA �→
(

U �→ ∫
U A

)
defines a functor of (∞, 1)-algebrasT CM : Ed [M]-Alg→

Faclc
M (Ed-Alg) which fits into a commutative diagram

Ed [M]-Alg

∫
M ��

T CM
��

Ed-Alg∞

Faclc
M (Ed-Alg∞)

H F(−)

�����������������

2. The functor T CM : Ed [M]-Alg → Faclc
M (Ed-Alg) is an equivalence of (∞, 1)-

categories.

In particular, any locally constant factorization algebra F on M with values in Ed -
algebras is equivalent to T CM (A) for a unique (up to equivalences) Ed [M]-algebra
A, i.e.,. algebra over the operad of little cubes in M × Dd . Further, topological chiral
homology of an open set U with value in the associated E

⊗
M×Dd -algebra computes the

(derived) sections of the factorization algebra.

Proof. We first deal with assertion (1). By Lemma 4, it is enough to prove that the rule
U �→ ∫

U A, together with the structure maps
∫

U1

A⊗ · · · ⊗
∫

U�
A ∼−→

∫

U1∪···∪U�
A −→

∫

V
A (22)

for Ui ’s pairwise disjoint open subsets of V ∈ Op(M × Dd), defines a locally constant
factorization algebra on M × Dd , naturally in A ∈ E

⊗
M×Dd -Alg. Note that, by [24,

Theorem 5.2.4.9], the E
⊗
M×Dd -algebra A satisfies that, for any ball B which is a subset

of a ball B ′, the canonical map
∫

B A ∼= A(B)→ A(B ′) ∼= ∫
B′ A is an equivalence in

k-Mod∞. Now we can apply the same proof as the one of Proposition 13 with A instead
of A, using Lemma 8 instead of Proposition 11.

We now prove assertion (2). By [24, Theorem 5.2.4.9], the canonical embedding θ :
E
⊗
M×Dd -Alg → N (Disk(M × R

d))-Alg induces an equivalence between E
⊗
M×Dd -Alg

and locally constant N (Disk(M × R
d))-algebras; we write N (Disklc(M))-Alg for the

6 Note that E[M]-algebras are denoted EM -algebras in [11] and DiskM
n -algebras in[12]; here the map

M → BT op(n) is given by the tangent bundle of M .
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latter subcategory. It is thus enough to define a functor EAM : Faclc
M (Ed-Alg∞) →

N (Disklc(M))-Alg such that T CM ◦ EAM and EAM ◦ T CM are respectively equiva-
lent to the identity functors of Faclc

M (Ed-Alg∞) and N (Disklc(M))-Alg. Let F be in
Faclc

M (Ed-Alg∞). By Lemma 4, we can think of F as a locally constant factorization
algebra on M × Dd . Let B ∈ Op(M × Dd) be homeomorphic to a ball. Then the re-
striction F|B is a locally constant factorization algebra on B ∼= R

n , thus is equivalent to
an En-algebra (which is canonically equivalent to F(B)). Further, for any finite family
B1, . . . , B� of pairwise disjoint open subsets homeomorphic to a ball and U an open
subset homeomorphic to a ball containing the Bi ’s, the locally constant factorization
algebra structure defines a canonical map

γB1,...,Bl ,U : F(B1)⊗ · · · ⊗ F(B�) −→ F(U )

which is an equivalence if � = 1. The maps γB1,...,Bl ,U are compatible in a natural way.
This shows that the collection F(B) for all open sets B ⊂ M × Dd homeomorphic
to a ball is a locally constant N (Disk(M × R

d))-algebra, denoted AF and we define
the functor EAM to be defined by EAM (F) := AF (for M = pt it is the same as the
functor f or defined in the proof of Proposition 10). In other words, the functor EAM (F)
is simply induced by the composition Disk(M×R

d) ↪→ Op(M×R
d)

F→ k-Mod∞. By
abuse of notation, we also write AF for the associated (well defined up to equivalences)
E
⊗
M×Dd -algebra.

LetA be an E
⊗
M×Dd -algebra. By constructionEAM◦T CM (A) is the (locally constant)

N (Disk(M ×R
d))-algebra given, on any (open set homeomorphic to an euclidean) ball

B, by

(
EAM ◦ T CM (A)

)
(B) =

∫

B
A ∼= A(B)

by definition of topological chiral homology [24, Example 5.3.2.8]. Hence there is a
canonical equivalence EAM ◦ T CM (A) ∼= A of locally constant N (Disk(M × R

d))-
algebras and thus of E

⊗
M×Dd -algebras as well.

It remains to prove that, there are natural equivalences T CM (AF ) ∼= F of factor-
ization algebras, where AF is the E

⊗
M×Dd -algebra EAM (F) associated to F as above.

Fixing a Riemannian metric on M×Dd , we can find a cover Ballg(M×Dd) of M given
by open sets in M × Dd which are geodesically convex. On every U ∈ Ballg(M ×R

d),
the restrictions T C|U (AF ) and F|U are naturally isomorphic by the above paragraph.
In particular, for any set UI :=⋂

i∈I Ui and any subset J ⊂ I , the following diagram

T C|UI (AF )
� ��

��

F|UI

��
T C|UI\J (AF )

� �� F|UI\J

is commutative. Since T CM (AF ) and F are the factorization algebras obtained by
descent from their restrictions on the cover Ballg(M ×R

d), on which they are naturally
equivalent, it follows that F is equivalent to T CM (AF ).
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Example 12. Since S2 × D1 embeds as an open set in R
3, any E3-algebra A yields, by

restriction, a (locally constant) factorization algebra AS2 on S2 (with values in E1-Alg)
(Lemma 4). By Theorem 6 and Proposition 11, decomposing the sphere as two disks
glued along the equator, we get that the factorization homology of AS2 is given by

H F(AS2) ∼= A
L⊗

C HS1 (A)
A

as an E1-algebra. Here C HS1(A) is the usual Hochschild chain complex of the (un-
derlying) E1-algebra structure of A, which is naturally an E2-algebra by [24, Theorem
5.3.3.11] and Proposition 11.

Similarly, any E2-algebra B yields a (translation invariant and locally constant) fac-
torization algebra on R

2, and thus a (locally constant) factorization algebra BT on a torus
T = S1 × S1 ∼= R

2/Z2. Since T is framed, we can also define its topological chiral
homology directly using the framing. It follows easily from the uniqueness statement in
Theorem 6, that BT is equivalent to T CT (B) in FacT (k-Mod∞).

Note that the two canonical projections p1, p2 : R2 → R define two locally constant
factorization algebras p1∗(B), p2∗(B) on R and thus, two E1-algebras B1 and B2. Now,
cutting the torus along two meridian circles, we get two copies of S1×D1 ∼= R

2/(Z⊕{0})
glued along their boundaries. By Theorem 6 again, the topological chiral homology of
S1 × D1 is the same as the factorization algebra homology of the descent factorization
algebra BZ⊕{0}. Thus

∫
S1×D1 B is equivalent to the usual Hochschild chain complex

C HS1(B1) and the later complex inherits an E1-structure from the E2-algebra structure
of B. From Proposition 11, we deduce a natural equivalence (in k-Mod∞)

H F(BT ) ∼= C HS1(B1)
L⊗

C HS1 (B1)⊗(C HS1 (B1))op
C HS1(B1) ∼= C HS1(C HS1(B1)).

Note that if B was actually a CDGA, then the later equivalence follows directly from
Corollary 11.

5.4. Some applications.

5.4.1. Another construction of topological chiral homology for framed manifolds. Let
M be an m-dimensional manifold which is n-framed. Given an En-algebra A, we can
define the topological chiral homology

∫
M A of M with values in A. By Proposition 13

and Theorem 6,
∫

M A is the factorization homology of a factorization algebra on M ×
Dn−m . We explain how to construct this factorization algebra directly.

Since M is n-framed, there is a bundle isomorphismϕ : T (M×Dn−m)
�−→ R

n where
R

n is a trivial bundle over M × Dn−m . Choosing a Riemannian metric on M × Dn−m ,
we have, using the spray associated to the exponential map, canonical diffeomorphisms
of (a basis of) open neighborhoods of any x ∈ M × Dn−m to open sets in the tangent
space T (M × Dn−m)x of M × Dn−m at x . Composing with the map ϕ induced by the
framing, we get diffeomorphisms U �→ ψ(Ux ) ∈ Op(Rn) where U is a (geodesically
convex) open neighborhood of x .

Let U be the cover of M × Dn−m obtained by considering the U above such that
φx (Ux ) ∈ Ball(Rn) is an euclidean ball. The cover U is a factorizing basis of open
subsets of M × Dn−m .
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To any U ∈ U , we associate A(U ) = A, a (fixed) En-algebra. We wish to extend
A into a factorization algebra. Since A is an En-algebra, it defines a locally constant
factorization algebra on R

n (see [9,24] and Proposition 10), which we, by abuse of
notation, again denote by A. For any pairwise disjoint U1, . . . ,Un ∈ U , and V ∈ U such
that Ui ⊂ V (i = 1 . . . n), we define the structure maps μU1,...,Un ,V (see Sect. 4.2) by
the following commutative diagram:

A(U1)⊗ · · · ⊗A(Un)

�
��

μU1,...,Un ,V �� A(V )

�
��

A(ψ(U1))⊗ · · · ⊗ A(ψ(Un)) �� A(ψ(V ))

where the lower arrow is given by the En-algebra structure of A. This yields a U-
factorization algebra (in the sense of [8] and Sect. 4.2) since A is a factorization algebra
on R

n and M×Dn−m is framed. By [8, Section 3], we can now extend A to a factorization
algebra on M × Dn−m .

Corollary 13. There is an equivalence of En−m-algebras

∫

M
A ∼= H F(M,A).

Proof. For any ball U , we have a natural equivalence
∫

U A ∼= A ∼= A(U ). Now the
result follows from Theorem 6 (and its proof) after taking global sections.

Note that topological chiral homology T CM (A) is independent of the Riemannian
metric, hence the factorization algebra A ∈ Faclc

M×Dn−m (k-Mod∞) on M thus obtained
is also independent of the Riemannian metric.

5.4.2. Interpretation of topological chiral and higher Hochschild in terms of mapping
spaces. As we have already noticed, higher Hochschild chains behave much like map-
ping spaces (and thus so do

∫
M A for CDGAs A). Indeed,

Corollary 14. Let A = Ω∗N be the de Rham forms on a d-connected manifold (with its
usual differential). Then for any manifold M of dimension m ≤ d, there is a natural quasi-
isomorphism

∫
M A ∼= Ω∗(N M ), the space of (Chen) de Rham forms of the mapping

space N M = Map(M, N ).

In other words, topological chiral homology of M with value in Ω∗N calculates the
mapping space N M (if N is sufficiently connected).

Proof. By Theorem 5, we are left to a similar statement for C HM (Ω
∗N ). Since M is

m-dimensional it has a simplicial model with no non-degenerate simplices in dimensions
above m. Now the result follows from [14, Proposition 2.5.3 and Proposition 2.4.6].

Remark 17. By [14, Section 2.4], there is a canonical map
∫

M Ω
∗N → Ω∗(N M ). Fur-

ther, it is possible to replace N by any nilpotent space (by mimicking the proof of [14,
Propositions 2.5.3 and 2.4.6]) and Ω∗N by a Sullivan model of N .
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We now give a (derived/homotopical) algebraic geometry statement. Recall that k
denotes a field of characteristic zero and let dStk be the (model) category of derived
stacks over k described in details in [30, Section 2.2] (which is a derived enhance-
ment of the category of stacks over k). This category admits internal Hom’s that we
denote by R Map(X,Y) following [30,31]. To any simplicial set X•, we associate the
constant simplicial presheaf k-Alg → sSet defined by R �→ X• and we denote X
the associated stack. For a (derived) stack Y, we denote OY its functions [30] (i.e.,
OY := RHom(Y,A1)).

Corollary 15. Let R = R Spec(R) be an affine derived stack (for instance an affine
stack) [30]. Then the Hochschild chains over X• with coefficient in R represent the
mapping stack R Map(X,R). That is,

OR Map(X,R)
∼= C H•X•(R).

Proof. The bifunctor (X,R Spec(R)) �→ R Map(X,R Spec(R)) is contravariant in X
and R ∈ C DG A≤0. Thus,OR Map(X,R) defines a covariant bifunctor. Since R Map(−,R)
sends (homotopy) limits to (homotopy) colimits, it follows from Theorem 2 (also see
Remark 4) that OR Map(X,R) is equivalent to C H•X•(R).

Example 13. Let B•Z be the nerve of Z and BZ its associated stack. Recall that there is an
homotopy equivalence S1 → |B•Z| (actually induced by a simplicial set map, see [21]).
From Corollary 15 we recover that the derived loop stack LR := R Map(BZ,R) is

represented by C H•B•Z(R)
�←− C H•

S1•(R) the standard Hochschild chain complex of R

as was proved in [31]. Similarly, the derived torus mapping stack R Map(BZ×BZ,R)
is represented by C H•

S1×S1(R) and the secondary cyclic homology in the sense of [31]

is represented by the homotopy fixed points C H•
S1×S1(R)

h(S1×S1) with respect to the
induced action of the simplicial group B•Z× B•Z on the derived mapping space.

Remark 18. Sheafifying (or rather stackifying) the higher Hochschild derived functor, it
seems possible to extend Corollary 15 to general derived schemes.

5.4.3. Topological chiral Homology and homology spheres Topological chiral homol-
ogy of CDGAs is a homology invariant, and thus, in particular, a homotopy invariant.
Indeed, we have the following corollary.

Corollary 16. Let f : M → N be smooth map between two manifolds inducing iso-
morphisms on homology and A be a CDGA, then

∫
M A ∼= ∫

N A.

Proof. This follows from Theorem 5 and the quasi-isomorphism invariance of C H•(−)(A)
(Proposition 4).

Example 14. The composition S3 → SO(3) → SO(3)/I , where I is the icosahedral
group, induces an isomorphism on homology. To see this, note that the fundamental group
of SO(3)/I is the binary icosahedral group Ĩ which is a perfect group and therefore
H1(SO(3)/I ) = 0. The result SO(3)/I is the Poincaré homology sphere and has thus
the same topological chiral homology with value in any CDGA as S3.

Remark 19. Note that we study topological chiral homology in the framework of chain
complexes, i.e. we have fixed the (∞, 1)-category of chain complexes as our “ground”
monoidal (∞, 1)-category. If one works in some other framework (such as topological
spaces), one can expect to have more refined invariants.
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Remark 20. Note that S1 has two diffeomorphic 1-framings (specified by a choice of
orientation). This accounts for the fact that classically there is only one Hochschild
complex for associative algebras. There are countably many 2-framings for the circle,
one for each integer, giving rise to equivalent topological chiral homologies when the
integrand is a CDGA. It would therefore be meaningful to look for an explicit E2-algebra
that distinguishes these framings from one another, if such exists. Similarly, it would be
interesting to find an explicit E3-algebra that distinguishes the two 3-framings of S1.

5.4.4. Fubini formula for topological chiral homology The exponential law for Hochschild
chains (Proposition 5) has an analogue for topological chiral homology.

Corollary 17. Let M, N be manifolds and A be an Ed [M×N ]-algebra. Then,
∫

N A has
a canonical lift as an Ed [M]-algebra and further, there is an equivalence of Ed-algebras

∫

M×N
A ∼=

∫

M

( ∫

N
A

)
.

Proof. Replacing M by M×R
d and using Lemma 4, it is enough to prove the result for

d = 0. Since the homology of a factorization algebra on X is given by the pushforward
along the canonical map p : X → pt , by Theorem 6, one has

∫

M×N
A ∼= p∗

(
T CM×N (A)

) ∼= p∗
(
π∗

(
T CM×N (A)

))
(23)

where π : M × N → M is the canonical projection. Since T CM×N (A) is locally
constant, π∗

(
T CM×N (A) is also locally constant whose value on an open ball D ⊂ M

is given by π∗
(
T CM×N (A)(U ) ∼= T CM×N (A)(U × N ) ∼= ∫

N A. By Theorem 6, this
defines the canonical Ed [M]-algebra structure on

∫
N A and the result now follows from

the equivalence (23).

Example 15. Let M, N be m + k-framed and n + �-framed manifolds of respective
dimension m, n and A be an Em+n+k+�-algebra. Then, Corollary 17 yields an equivalence
of Ek+�-algebras:

∫

M×N
A ∼=

∫

M

( ∫

N
A
)
.
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