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Abstract. We use factorization homology and higher Hochschild (co)chains

to study various problems in algebraic topology and homotopical algebra, no-

tably brane topology, centralizers of En-algebras maps and iterated bar con-
structions. In particular, we obtain an En+1-algebra model on the shifted

integral chains C•+m(Map(Sn,M)) of the mapping space of the n-sphere into

an m-dimensional orientable closed manifold M . We construct and use E∞-
Poincaré duality to identify the higher Hochschild cochains, modeled over the

n-sphere, with the chains on the above mapping space, and then relate the

Hochschild cochains to the deformation complex of the E∞-algebra C∗(M),
thought of as an En-algebra. We invoke (and prove) the higher Deligne conjec-

ture to furnish En-Hochschild cohomology, and all that is naturally equivalent
to it, with an En+1-algebra structure and further prove that this construction

recovers the sphere product. In fact, our approach to the Deligne conjecture

is based on an explicit description of the En-centralizers of a map of E∞-
algebras f : A → B by relating it to the algebraic structure on Hochschild

cochains modeled over spheres, which is of independent interest and explicit.

More generally, we give a factorization algebra model/description of the cen-
tralizer of any En-algebra map and a solution of Deligne conjecture. We also

apply similar ideas to the iterated bar construction. We obtain factorization

algebra models for (iterated) bar construction of augmented Em-algebras to-
gether with their En-coalgebras and Em−n-algebra structures, and discuss

some of its features. For E∞-algebras we obtain a higher Hochschild chain

model, which is an En-coalgebra. In particular, considering the E∞-algebra
structure of an n-connected topological space Y , we obtain a higher Hochschild

cochain model of the natural En-algebra structure of the chains of the iterated

loop space C∗(ΩnY ).
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7.2. Topological identification of the brane product 87
7.3. A spectral sequence to compute the brane topology product 92
8. Iterated bar constructions 95
8.1. Iterated loop spaces and iterated bar constructions for E∞-algebras 95
8.2. Iterated Bar constructions of augmented En-algebras 102
References 121

1. Introduction

The main goal of this paper is to apply the recent tools given by factorization
algebras and factorization homology (or higher Hochschild (co)homology) to study
various problems in algebraic topology and homological algebra, including the study
of string and brane topology, existence and explicit description of centralizers of
maps, which gives rise to a solution of higher Deligne conjecture, and the study of
iterated bar constructions for (homotopically commutative) algebras and iterated
loop spaces. These applications are the core of the sections 6, 7 and 8.

We start demonstrating these ideas by first explaining the starting point of our
work. Our original motivation was the study of brane topology, as emphasized by D.
Sullivan: the algebraic structure of the chains on the mapping space of the n-sphere
into an orientable m-dimensional manifold M ; the coefficient of the chains being
over a field of arbitrary characteristic, or over the integers. The algebraic structure
of the chains on the mapping spaces of spheres into a manifold has drawn consider-
able interest, following the work of Chas and Sullivan [CS] on the free loop space.
It is now standard that the homology of the free loop space LM = Map(S1,M),
shifted by the dimension of M , has an intriguing structure of a BV-algebra, and in
particular of a Gerstenhaber algebra1, that is of a (graded) commutative algebra
endowed with a degree 1 Lie bracket satisfying the Leibniz rule. This structure

1also called 1-Poisson algebra
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is in fact part of a 2-dimensional homological conformal field theory (for instance
see [?, BGNX, Lu4])); the BV-algebra structure comes from the genus 0 part of
this topological conformal field theory.

Higher string topology, also referred to as brane topology, is a generalization of
string topology in which the circle is replaced by the n-dimensional sphere. Sullivan
and Voronov (see [CV]) have stated2 that the (shifted) homology of the mapping
sphere Map(Sn,M) has the structure of a BVn-algebra and in particular of an
n-Poisson algebra (or n-braid algebra in the terminology of [KM]). The latter
structure is the analogue of a Gerstenhaber algebra in which the Lie bracket is of
degree n. A BVn-algebra is an algebra over the homology of the operad of framed n-
dimensional little disks, while an n-Poisson algebra is an algebra over the homology
of the little n-dimensional disks operad (for instance see [CV, SW]); algebras over
(the chains on) the little n-dimensional disks operad are usually called En-algebras.

The En-algebras form a hierarchy of homotopy commutative structures, whose
commutativity increase with n, with E1-algebras being essentially equivalent to
dg-associative algebras. In particular, an E2-algebra is a dg-associative algebra,
with product ∪0, together with an homotopy operator ∪1 for the commutativity
of the product ∪0. Similarly, in an En-algebra, ∪1 is homotopy commutative, the
homotopy being given by an operator ∪2 which is homotopy commutative and
so on until an homotopy operator ∪n−1 which is not (required to be) homotopy
commutative. It is well known that the homology of an En-algebra is an n-Poisson
algebra. These algebras are nowadays of fundamental importance in quantization
(for instance see [KS, PTVV]).

Sullivan-Voronov’s work leads to the following:

Question: Is it possible to lift the n-Poisson algebra structure on the homology of
Map(Sn,M) to a structure of (framed) En-algebras on the (suitably shifted) chains
of Map(Sn,M) with coefficient in an arbitrary ring k?

For an n-connected closed and oriented manifold M , we give a positive answer
to this conjecture.

Theorem 7.1. Let M be an n-connected Poincaré duality space whose homology
groups are projective k-modules. The shifted chain complex C∗+dim(M)(Map(Sn,M))
has a natural En+1-algebra structure which induces the Sullivan-Voronov sphere
product in homology

Hp

(
Map(Sn,M)

)
⊗Hq

(
Map(Sn,M)

)
→ Hp+q−dim(M)

(
Map(Sn,M)

)
,

when M is an oriented closed manifold.

This En+1-algebra structure can be seen as a higher dimensional analogue of the
genus 0 part of a topological conformal field theory.

Our approach is based on an algebraic model of the chains on the mapping spaces
generalizing Hochschild cochains, a fruitful model for string topology operations.
This algebraic model is an instance of factorization homology for commutative or
E∞-algebras which we develop in sections 3 and 4.

Hochschild cohomology groups of an associative algebra A with value in a bi-
module N are defined as

HHn(A,N) ∼= Hn
(
RHomA⊗Aop(A,N)

) ∼= ExtnA⊗Aop(A,N),

2also see [CV, BGNX, C] for rigorous explicit construction of the underlying graded commu-
tative multiplication, called the sphere product
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where RHom denotes the derived mapping space, while the Hochschild homology
groups HH•(A,N) ∼= TorA⊗A

op

n (A,N) are defined similarly by derived tensor prod-
ucts. These (co)homology groups are given by standard (co)chain complexes [Ge, L].
Hochschild cohomology of any (dg-)associative algebra has a natural Gerstenhaber
algebra structure and further, by the (solutions to the) Deligne conjecture, the
latter is induced by an E2-algebra structure on the Hochschild cochains.

Hochschild (co)chains have been used as models for free loop spaces since at least
the 1980s. Indeed, there is an isomorphism (see [CV, FTV], for example)

(1) H•(LM) ∼= HH•(C∗(M), C∗(M)) ∼= HH•(C∗(M), C∗(M))[d]

if M is an oriented and simply connected manifold of dimension d which, in charac-
teristic zero is an isomorphism of Gerstenhaber algebras [FT]. Further, Hochschild
chains of a Calabi-Yau algebra carries a topological conformal field theory struc-
ture [Lu4]. The above isomorphisms (1) make use of two ingredients. First, it uses
the (dual of) an isomorphism HH•(C

∗(M), C∗(M)) ∼= H•(LM) for any simply
connected space M (which can be described in geometric terms by Chen interated
integrals when M is a manifold) and, second, it uses a lift of the Poincaré dual-
ity quasi-isomorphism C∗(M) → C∗(M)[dim(M)] to a bimodule map, when M is
further a closed manifold.

In this paper, we generalize these two facts from circles to n-dimensional spheres
as well as the E2-algebra structure on Hochschild cochains as we explain below.
Combining these three ingredients will give us the desired En+1-algebra structure
on C∗(Map(Sn,M)). Our technique should be related to those of Hu [Hu] and
Hu-Kriz-Voronov [HKV].

Bimodules over an associative algebra correspond to the operadic notion of
E1-modules. There is a notion of En-Hochschild cohomology where maps of A-
bimodules are replaced by maps of A-En-modules for an En-algebra A ([L-HA, F1,
Fre]). The Kontsevich-Soibelman generalization of the Deligne conjecture, i.e., the
higher Deligne conjecture, is that the En-Hochschild cohomology of A, denoted
HHEn(A,A) is an En+1-algebra. For X a topological space, the cochains C∗(X)
are more than simply an associative algebra but are homotopy commutative, that
is, it carries a functorial structure of an E∞-algebra; in particular of an En-algebra
for all n. In characteristic zero, one can use CDGAs models for the cochains, but
this is not possible when working over the integers or a finite field. Nevertheless,
for E∞-algebras, En-Hochschild cohomology have extra functoriality (not shared
by all En-algebras) and actually identifies with higher Hochschild cohomology over
the n-spheres.

The latter theories are the subject of Section 3 and can be expressed in terms of
factorization homology, also referred to as topological chiral homology [L-HA, F1,
CG, GTZ2]. Factorization homology is an invariant of both (framed) manifolds
(and framed embeddings) and En-algebras based on (extended) topological field
theories. In fact, the factorization homology of E∞-algebras becomes a homotopy
invariant and can be applied to any space (and continuous maps) and not just to
framed manifolds. This generalization is precisely computed by higher Hochschild
homology, introduced by Pirashvili in [P], which can be seen as a kind of limit
of these ideas when the dimension of the TFT goes to infinity [GTZ2]. Indeed,
by Theorem 3.13 below (and [GTZ2, F1, L-HA]) if X is a manifold and A is an
E∞-algebra, then, the factorization homology

∫
X
A of X with coefficients in A is

naturally equivalent to the Hochschild chains CHX(A) of A over X.
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The restriction to E∞-algebras is not an issue in our case of interest since the
cochain complex C∗(X) is indeed an E∞-algebra. We study the higher Hochschild
(co)chains for E∞-algebras and modules in Section 3.1, which are modeled over
spaces in the same way the usual Hochschild (co)chains are modeled on circles.
More precisely, this is a rule that assigns to any space X, E∞-algebra A, and
A-module M , a chain complex CHX(A,M), functorial in every argument, such
that for X = S1, one recovers the usual Hochschild chains. The functoriality with
respect to spaces is a key feature which allows us to derive algebraic operations on
the higher Hochschild (co)chain complexes from maps of topological spaces.

Higher Hochschild chains have a good axiomatic characterization (similar to
Eilenberg-Steenrod axioms) which formally follows from the fact that E∞-algebras
are tensored over spaces, see Corollary 3.29 in Section 3.3. This allows to generalize
the aforementioned relationship between free loop spaces and Hochschild chains to
every space. In fact, we prove (Theorem 3.33) that there is a natural map of E∞-
algebras CHY (C∗(X)) → C∗(Map(Y,X)) which is a quasi-isomorphism when X
is dim(Y )-connected. This is an E∞-analogue of our previous result [GTZ] for
CDGA’s in characteristic zero (using generalizations of Chen iterated integrals).

In Section 4, we study the algebraic structure of higher Hochschild cochains. We
first define, for any E∞-A-algebra B, the (associative) wedge product

CHX(A,B)⊗ CHY (A,B)→ CHX∨Y (A,B)

and then we prove that when X is a sphere Sd, the wedge product induces a

structure of Ed-algebra on CHSd(A,B), generalizing the usual cup-product in
Hochschild cohomology.

Theorem 4.12. Let A be an E∞-algebra and B an E∞-A-algebra. The collection

of maps (pinchSd,k : Cd(k) × Sd −→
∨
i=1...k S

d)k≥1 makes CHSd(A,B) into an

Ed-algebra, such that the underlying E1-structure of CHSd(A,B) agrees with the
one given by the cup-product,

∪Sd : CHSd(A,B)⊗ CHSd(A,B) −→ CHSd∨Sd(A,B) −→ CHSd(A,B).

The CDGA version of this result goes back to the first author’s note [G1]. This
result is in fact a relative version of the higher Deligne conjecture.

In Section 6, we reinterpret and generalize the above results, to the case of all
En-algebras in terms of centralizers of En-algebra maps. The latter are En-algebras
satisfying a universal property whose existence was established by Lurie [L-HA].
Their importance lies in the fact that their structure controls relative deformations
of categories of En-modules. We prove

Theorem (Theorem 6.8 and Proposition 6.22). Let f : A → B be an En-algebra

map. The En-Hochschild cohomology HHEn(A,B) ∼= RHomEnA
(
A,B

)
has a natural

En-algebra structure exhibiting it as the centralizer z(f) of f .

Our result gives another proof of existence of centralizers and also gives an ex-
plicit description in terms of factorization algebras. Applying the universal property
of centralizers when f = idA, and using an approach due to Lurie [L-HA], we ob-
tain that z(idA) ∼= HHEn(A,A) inherits a canonical En+1-algebra structure, giving
a solution to the higher Deligne conjecture, see Corollary 6.28. We also prove that

the Hochschild cochains CHSd(A,A) of a commutative algebra A are equivalent to
its En-Hochschild cohomology (Proposition 6.33).
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As already mentioned, our approach is based on the relationship between En-
algebras and factorization algebras which we briefly explain, among other prelimi-
naries, in Section 2.

Factorization algebras originated from quantum field theories and the pioneer-
ing work of Beilinson-Drinfeld [BD] on chiral and vertex algebras. We follow an
approach due to Lurie [L-HA] and Costello-Gwilliam [CG]. They are algebraic
structures which share many similarities with (co)sheaves and were introduced to
describe quantum field theories, much in the same way the sheaf of functions de-
scribes the structure of a manifold or scheme [BD, CG]. Roughly speaking a fac-
torization algebra F associate (covariantly) cochain complexes to open subsets of a
(stratified) manifold X together with multiplications F(U1)⊗· · ·⊗F(Un)→ F(V )
for any family of pairwise disjoint open subsets of an open set V in X. It is re-
quired to satisfy a “cosheaf-like” condition, meaning that F(V ) can be computed
by analogues of Čech complexes indexed on nice enough covers.

Factorization homology is a catchword to describe homology theories specific to,
say, oriented3 manifolds of a fixed dimension n. It can be seen as the (derived)
global section of (locally constant) factorization algebras much in the same way
as singular cohomology can be seen as sheaf cohomology with value in a constant
sheaf.
En-algebras can be identified with factorization algebras on Rn which are locally

constant, that is for which the structure map F(U)→ F(V ) is an equivalence when
U is a subset of V and both are homeomorphic to a disk. This provides a nice model
for the category of En-algebras, which, in some sense can be thougt as a kind of
mild “strictification” of En-algebras. This is the model we use in our approach to
centralizers. In Section 5.2, we recall the relationship between En-modules over an
En-algebra A and factorization homology over Sn−1×R. Namely that the category
of En-A-modules is equivalent to the category of left modules over the (associative)
algebra

∫
Sn−1×RA. For n = ∞, one recovers that E∞-A-modules are the same as

left modules over A ([L-HA, Lu2, KM]).

Theorem 5.13. Let A be an E∞-algebra. There is an equivalence of symmetric
monoidal ∞-categories between the category A-ModE∞ of E∞ A-Modules and the
category of left A-modules (where A is viewed as an E1-algebra).

We give a proof of this result using factorization homology in Section 5.3. From
this, we deduce in Section 5.4, that, the Poincaré duality isomorphism can be
uniquely lifted into an E∞-quasi-isomorphism

Corollary 5.26. Let (X, [X]) be a Poincaré duality space. The cap-product by [X]
induces a quasi-isomorphism of E∞-C∗(X)-modules

C∗(X)
'−→ C∗(X)[dim(X)]

realizing the (unique) E∞-lift of the Poincaré duality isomorphism.

Putting together the above results on the Deligne conjecture, Poincaré duality
and interpretation of higher Hochschild chains in terms of mapping spaces, we
obtain in Section 7 that the chains C∗(Map(Sn,M)) for an n-connected manifold
M inherits a natural En+1-algebra structure (Theorem 7.1) lifting Sullivan-Voronov

3there are also variants specific to many other classes of structured manifold of fixed dimension;
for instance framed, spin or unoriented ones
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sphere product. To identify the sphere product, we use the fact that we have an
explicit description of the centralizers of En-algebra maps. The above results yield
chain level constructions over any field or the ring of integers. Results similar to
Theorem 7.1 can be obtained using only bimodules maps (not necessarily quasi-
isomorphisms) C∗(M) → C∗(M)[d]. This yield a functorial construction of En+1-
algebra structures on C∗(Map(Sn,M)), see Theorem 7.10.

Furthermore, ideas similar (in some sense dual) to the concept of the centralizer
for En-algebra maps, lead to a description and construction of bar and iterated bar
constructions for En-algebras. The bar construction of a (dg-)associative augmented
algebra is a standard functor in homological algebra and algebraic topology. The
bar construction of a CDGA is itself an augmented algebra and thus can be iterated;
this result was extended to E∞-algebras by Fresse [Fre2].

In topology, iterated bar constructions arise as models for iterated loop spaces
Ωn(X), the space of pointed maps from the sphere Sn to a pointed spaceX. The lat-
ter is an En-algebra in the category of spaces so that its singular cochains becomes
an En-coalgebra in E∞-algebras. In Section 8.1, for an augmented E∞-algebra A
we apply the En-algebra structure on higher Hochschild chains CHSn(A, k) (iden-
tified with the centralizer construction for the augmentation A→ k) to describe the
iterated Bar construction of an augmented E∞-algebra. We obtain that Bar(A)
is naturally an E1-coalgebra in augmented E∞-algebras so that we can iterate the
construction. With this, we prove that the n-iterated bar construction Bar(n) is
an En-coalgebra inside the ((∞, 1))-category of E∞-algebras, see Theorem 8.9. We
then relate this construction to iterated loop spaces by showing that there is a
natural map of En-coalgebras (and E∞-algebras) Bar(n)(C∗(X)) → C∗(Ωn(X))
which is a quasi-isomorphism if X is n-connected.

Corollary 8.10. Let Y be a topological space. The map ItΩn : Bar(n)(C∗(Y ))→
C∗
(
Ωn(Y )

)
is an En-coalgebra morphism in the category of E∞-algebras, which is

an equivalence if Y is n-connected.

We also give similar dual statements for chains on iterated loop spaces using that
the dual of the Bar construction is precisely the centralizer z(A→ k) ∼= CHSn(A, k)
of the augmentation A→ k.

In Section 8.2, we consider the bar construction of an Em-algebra A. Using its
factorization homology interpretation due to Francis [F1], we prove that the bar
construction Bar(1)(A) is naturally an Em−1-algebra which allows us to iterate this
construction up to m-times. Then, using the technique of Section 6, we prove that

Theorem 8.37. The n-iterated bar construction of an augmented Em-algebra (m ≥
1) has a natural structure of an En-coalgebra inside the ((∞, 1)−)category Em−n-
algebras.

Similar result are stated in [F2]. The existence of the iterated bar construction
for Em-algebras as a chain complex was proved in [Fre3]. The idea behind the
theorem is again to prove a similar statement for locally constant factorization
algebras over Rm. More precisely, we prove that an augmented locally constant
factorization algebra over Rm naturally gives rise to a locally constant stratified
factorization algebra on the pointed sphere Sm whose global sections are precisely
the iterated bar construction Bar(m)(A). This construction extends into a locally
constant factorization coalgebra over Rm which associates to any disk (the global
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sections of) a stratified factorization algebra on the one-point compactification of
the disk.

In this paper, we work in Lurie’s framework of stable ∞-categories [L-HTT,
L-HA], which is very well suited for doing homological algebra in the symmetric
monoidal context. In particular, we will work over the (derived) (∞, 1)-category
k-Mod∞ of chain complexes over a commutative unital ring k. (In section 2, we
briefly recall notions of (∞, 1)-categories, ∞-operads and in particular the En-
operad and its algebras and their modules.) It should be noted that in characteristic
zero, one can use CDGA’s instead of E∞-algebras which allows us to have (model)
categories interpretation of all our results in the spirit of [G1, GTZ, GTZ2].

Acknowledgments. The authors4 would like to thank the Max-Planck-Institut
für Mathematik in Bonn, which hosted them while part of this project was being
done. The first author would also like to thank the Einstein Chair at CUNY for their
invitation. The third author is partially supported by the NSF grant DMS-1309099.
We also would like to thank Damien Calaque, Kevin Costello, John Francis and
Hiro-Lee Tanaka for many helpful discussions, and Jim Stasheff for useful comments
on an earlier draft of this paper.

Conventions and notations:

(1) We use homological grading, emphasizing the geometric dimension of the
chains on mapping spaces. In particular, unless otherwise stated, differen-
tial will lower the degree by one. We will write k-Mod∞ for the (∞, 1)-
category of chain complexes of k-modules and ⊗ for tensor products over
the ground ring k.

(2) We will denote the Hochschild chain complex of A, modeled over a space,
X with values in an A-module M , by CHX(A,M) as an object in the
stable (∞, 1)-category of chain complexes. This is a covariant functor in
X. Similarly, we will also denote the Hochschild cochain complex of A,
modeled over a space X, with values in an A-module M , by CHX(A,M),
as an object in the stable (∞, 1)-category of chain complexes. This is a
contravariant functor of X, see § 3.2. This is compatible with the notation
introduced in [GTZ2] but not with those in [G1, GTZ]. We choose this
notation in order to emphasize the variance of the functor with respect to
X.

(3) We will respectively denote HHX,n(A,M) and HHX,n(A,M) the degree n
homology groups of CHX(A,M) and CHX(A,M).

(4) For n ∈ N ∪ {∞}, we will write En-Alg for the (∞, 1)-category of En-
algebras in k-Mod∞ as studied in [Lu3, L-HA, F1]. We will also denote
by E⊗n the ∞-operad governing En-algebras, HHEn(A,M) for the En-
Hochschild cohomology of an En-algebra with value in an En-A-module
M (Definition 6.1) and

∫
X
A for the factorization homology of A on a

framed manifold X (see § 2.3). Also CDGA∞ will be the (∞, 1)-category
of commutative differential graded k-algebras (CDGA for short).

(5) Given an En-algebra A, we will write A-ModEn for the (∞, 1)-category of
En-modules over A. Similarly, if B is an Em-algebra (with m ≥ n), we will

4the first author was partially supported by the ANR Grant HOGT
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write B-ModEn for the (∞, 1)-category of En-modules over B viewed as an
En-algebra.

(6) If A is an En-algebra (n ≥ 1) by a left or right module over A, we mean
a left or right module over A viewed as an E1-algebra. We will denote
A−LMod and A−RMod the respective (∞, 1)-categories of left and right
modules over A.

(7) If A is a CDGA, and V an A-module, we will write SymA(V ) for its differ-
ential graded symmetric algebra. When A = k, we will often simply write
S(V ) := Symk(V ).

(8) Unless otherwise stated, we will work in the context of unital algebras.

2. Preliminaries on En-algebras and factorization homology

In this section, we briefly recall notions of (∞, 1)-categories, ∞-operads and
in particular the En-operad, its algebras, and their modules. There are several
equivalent notions of (symmetric monoidal) (∞, 1)-categories and the reader should
feel free to use its favorite ones. Below, we recall very briefly the model given by
the complete Segal spaces and give some examples.

2.1. ∞-categories. Following [R, Lu4], an (∞, 1)-category is a complete Segal
space. There is a simplicial closed model category structure, denoted SeSp on
the category of simplicial spaces such that a fibrant object in the SeSp is precisely
a Segal space. Rezk has shown that the category of simplicial spaces has another
simplicial closed model structure, denoted CSeSp, whose fibrant objects are pre-
cisely complete Segal spaces [R, Theorem 7.2]. Let R : SeSp→ SeSp be a fibrant

replacement functor. Let ·̂ : SeSp→ CSeSp, X• → X̂•, be the completion functor
that assigns to a Segal space an equivalent complete Segal space. The composition

X• 7→ R̂(X•) gives a fibrant replacement functor LCSeSp from simplicial spaces to
complete Segal spaces.

Let us explain how to go from a model category to a simplicial space. The stan-
dard key idea is to use Dwyer-Kan localization. LetM be a model category andW
be its subcategory of weak-equivalences. We denote LH(M,W) its hammock local-
ization, see [DK]. One of the main properties of LH(M,W) is that it is a simplicial
category and that the (usual) category π0(LH(M,W)) is the homotopy category
of M. Furthermore, every weak equivalence has a (weak) inverse in LH(M,W).
WhenM is further a simplicial model category, then for every pair (x, y) of objects
HomLH(M,W)(x, y) is naturally homotopy equivalent to the derived mapping space
RHom(x, y).

It follows that any model category M gives rise functorially to the simplicial
category LH(M,W). Taking the nerve N•(L

H(M,W)) we obtain a simplicial
space. Composing with the complete Segal Space replacement functor we get
a functor M → L∞(M) := LCSeSp(N•(L

H(M,W))) from model categories to
(∞, 1)-categories (that is complete Segal spaces).

Example 2.1. Applying the above procedure to the model category of simplicial
sets sSet, we obtain the (∞, 1)-category sSet∞. Similarly from the model category
CDGA of commutative differential graded algebras, which we refered to as CDGAs
for short, we obtain the (∞, 1)-category CDGA∞. Note that a simplicial space
is determined by its (∞, 0) path groupoid and therefore the category of simplicial
sets should be thought of as the (∞, 1) category of all (∞, 0) groupoids. Further,
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the disjoint union of simplicial sets and the tensor products (over k) of algebras are
monoidal functors which gives sSet and CDGA a structure of monoidal model cat-
egory (see [Ho] for example). Thus sSet∞ and CDGA∞ also inherit the structure
of symmetric monoidal (∞, 1)-categories in the sense of [R, Lu4].

The model category of topological spaces yields the (∞, 1)-category Top∞. Since
sSet and Top are Quillen equivalent [GJ, Ho], their associated (∞, 1)-categories

are equivalent (as (∞, 1)-categories): sSet∞
∼
�
∼
Top∞, where the left and right

equivalences are respectively induced by the singular set and geometric realization
functors.

One can also consider the pointed versions sSet∞∗ and Top∞∗ of the above
(∞, 1)-categories (using the model categories of these pointed versions [Ho]).

Example 2.2. There are model categories A-Mod and A-CDGA of modules and
commutative algebras over a CDGA A, thus the above procedure gives us (∞, 1)-
categories A-Mod∞ and A-CDGA∞ and the base changed functor lifts to an
(∞, 1)-functor. Further, if f : A → B is a weak equivalence, the natural functor

f∗ : B-Mod → A-Mod induces an equivalence B-Mod∞
∼→ A-Mod∞ of (∞, 1)-

categories since it is a Quillen equivalence.
Moreover, if f : A → B is a morphism of CDGAs, it induces a natural functor

f∗ : A-Mod→ B-Mod,M 7→M ⊗AB, which is an equivalence of (∞, 1)-categories
when f is a quasi-isomorphism, and is a (weak) inverse of f∗ (see [TV] or [KM]).
Here, we also denote f∗ : A-Mod∞ → B-Mod∞ and f∗ : B-Mod∞ → A-Mod∞
the (derived) functors of (∞, 1)-categories induced by f . Since we are working over
a field of characteristic zero, the same results applies to monoids in A-Mod and
B-Mod, that is to the categories A-CDGA∞ and B-CDGA∞.

Also, note that if A,B,C are CDGAs and f : A → B, g : A → C are CDGAs
morphisms, we can form the (homotopy) pushout D ∼= B ⊗L

A C; let us denote
p : B → D and q : C → D the natural CDGAs maps. Then, we get the two natural

based change (∞, 1)-functors C-Mod∞
f∗◦g∗
⇒
p∗◦q∗

B-Mod∞. Given any M ∈ C-Mod,

the natural map f∗ ◦ g∗(M) → p∗ ◦ q∗(M) is an equivalence [TV, Proposition
1.1.0.8].

2.2. ∞-operads, En-algebras. An operad is a special case of a colored operad
which itself is a special case of an∞-operad. An infinity operad O is an∞-category
together with a functor O⊗ → N(Fin∗) satisfying a list of axioms, see [L-HA]. An
other (equivalent) approach to ∞-operads is given by the dendroidal sets [CiMo].

The simplest example of an ∞-operad is N(Fin∗) → N(Fin∗). This example
is the ∞-operad associated to the operad Comm. In other words Comm⊗ =
N(Fin∗).

Definition 2.3. The configuration spaces of small n-dimensional cubes embedded
in a bigger n-cube form an operad, En, whose associated ∞-operad is denoted by
E⊗n see [L-HA]. This example has the same objects as Fin∗, and we will denote
E⊗n (I, J) its spaces of morphisms from I to J .

There is a standard model for this operad given by
(
Cn(r)

)
r≥1

, the operad of

little n-cubes, see [Ma, L-HA], where Cn(r) is the configuration space of rectilinear
embeddings of r-disjoint cubes inside an unit cube. Its singular chain C∗(Cn(r)) is
a model for the operad governing En-algebras in k-Mod∞.
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Recall that, for any integer n ≥ 0, E⊗n denotes the∞-operad of little n-cubes. By
an En-algebra we mean an algebra over the ∞-operad E⊗n . We will denote En-Alg
the symmetric monoidal ∞-category of Ek-algebras in the symmetric monoidal ∞-
category of differential graded k-modules (which is equivalent to the one given in
Definition 2.4 below).

For any En-algebra A, let A-ModEn denote the symmetric monoidal∞-category
of modules over the En-algebraA. If C is a symmetric monoidal (∞, 1)-category (dif-
ferent from k-Mod∞), we denote En-Alg(C) for the (∞, 1)-category of En-algebras
in C and similarly En-coAlg(C) for the category of En-coalgebras in C.

There are natural maps (sometimes called the stabilization functors)

(2) E⊗0 −→ E⊗1 −→ E⊗2 −→ · · ·

(induced by taking products of cubes with the interval (−1, 1)). It is a fact that
the colimit of this diagram, denoted by E⊗∞ can be identified with Comm⊗ [L-HA,
Section 5.1]. In particular, for any n ∈ N−{0}∪{+∞}, the map E⊗1 → E⊗n induces
a functor En-Alg → E1-Alg which associates to an En-algebra its underlying E1-
algebra structure.

According to Lurie [L-HA] (also see [F1, AFT]), we also have an alternative
definition for En-algebras.

Definition 2.4. The (∞, 1)-category of En-algebras, is defined as the ((∞, 1)-
)category of symmetric monoidal functors

Fun⊗(Diskfrn , k-Mod∞)

where Diskfrn is the category with objects the integers and morphism the spaces

Diskfrn (k, `) := Embfr(
∐
k Rn,

∐
` Rn) of framed embeddings of k disjoint copies of

a disk Rn into ` such copies; the monoidal structure is induced by disjoint union of
copies of disks.

We will denote by MapEn-Alg(A,B) the mapping space of En-algebras maps
from A to B, i.e., the space of maps between the associated symmetric monoidal
functors.

In other words, En-Alg is equivalent to the (∞, 1)-category of Diskfrn -algebras

(where Diskfrn is equipped with its obvious ∞-operad structure). The tensor prod-
ucts in k-Mod∞ induces a symmetric monoidal structure on En-Alg as well (which,
for instance, can be represented by usual Hopf operads such as those arising from
the filtration of the Barratt-Eccles operad [BF]).

Example 2.5 (Opposite of an En-algebra). There is a canonical Z/2Z-action on
En-Alg induced by the antipodal map τ : Rn → Rn, x 7→ −x acting on the source
of Fun⊗(Diskfrn , k-Mod∞). If A is an En-algebra, then the result of this action
Aop := τ∗(A) is its opposite algebra. If n = ∞, the antipodal map is homotopical
to the identity so that Aop is equivalent to A as an E∞-algebra.

Example 2.6 (Singular (co)chains). Let X be a topological space. Then its sin-
gular cochain complex C∗(X) has a natural structure of an E∞-algebra, whose
underlying E1-structure is given by the usual (strictly associative) cup-product (for
instance see [M2]). Similarly, the singular chains C∗(X) have a natural structure
of E∞-coalgebra which is the predual of (C∗(X),∪). There are similar explicit
constructions for simplicial sets X• instead of spaces, see [BF].
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We recall that C∗(X) is the linear dual of the singular chain complex C∗(X)
which is the geometric realization (in k-Mod∞) of the simplicial k-module k[∆•(X)]
spanned by the singular set ∆•(X) := Map(∆•, X). Here, ∆n is the standard n-
dimensional simplex.

Also note that, for E∞-algebras A, B, the mapping space MapE∞-Alg(A,B) is
the (geometric realization of the) simplicial set [n] 7→ HomE∞-Alg

(
A,B⊗C∗(∆n)

)
.

Remark 2.7. The (∞, 1)-category E∞-Alg is enriched over sSet∞ ∼= Top∞ and
has all (∞-)colimits. In particular, it is tensored over sSet∞, see [L-HTT, L-HA]
for details on tensored ∞-categories (and [Ke] for the classical theory) or, for in-
stance, [EKMM, MCSV] in the E∞-case (in the context of topologically enriched
model categories). We recall that it means that there is a functor E∞-Alg ×
sSet∞ → E∞-Alg, denoted (A,X•) 7→ A�X•, together with natural equivalences

MapE∞-Alg

(
A�X•, B

) ∼= MapsSet∞
(
X•,MapE∞-Alg

(
A,B

))
.

Note that the tensor A�X• can be computed as the colimit lim−→ pAX• where pAX• is

the constant map X• → E∞-Alg taking value A, for instance see [L-HTT, Corollary
4.4.4.9]. Similarly, CDGA∞ is tensored over sSet∞ (and thus Top∞ as well).

We will use the following fact, which identifies the coproduct in E∞-Alg with
the tensor product, to show the Hochschild complex of an E∞-algebra model over
a space X has a natural E∞ structure.

Proposition 2.8. In the symmetric monoidal (∞, 1)-category E∞-Alg, the tensor
product is a coproduct.

For a proof see Proposition 3.2.4.7 of [L-HA] (or [KM, Part V, Corollary 3.4]);
this essentially follows from the observation that an E∞-algebra is a commutative
monoid in (k-Mod∞,⊗), see [L-HA] or [KM, Section 5.3]. In particular, Proposi-
tion 2.8 implies that, for any finite set I, A⊗I has a natural structure of E∞-algebras
which can be rephrased as

Proposition 2.9. A symmetric monoidal functor N(Fin) → k-Mod∞ has a nat-
ural lift to an ∞-functor N(Fin)→ E∞-Alg.

It follows that, for a finite set I, we have natural multiplication maps

A⊗I
m

(I)
A−→ A

which is a map in E∞-Alg and is compatible with compositions. We will simply
write mA : A ⊗ A → A for the E∞-algebra map obtained by taking I = {0, 1}.
Any A-module can be pulled back along m

(I)
A to inherit a canonical A⊗I -module

structure:

Proposition 2.10. The maps m
(I)
A induced by the functor of Proposition 2.9 yields

a natural (in A) (∞-)functors A-ModE∞
(m

(I)
A )∗

→ A⊗I-ModE∞ lifting the usual base-
change functor for commutative algebras.

Let Fin and Fin∗ denote the categories of finite sets and pointed finite sets
respectively. There is a forgetful functor Fin∗ → Fin forgetting which point is the
base point. There is also a functor Fin → Fin∗ which adds an extra point called
the base point.
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Further, since the ∞-operads E⊗n are coherent (see [L-HA, Lu3]), the categories
A-ModEn for A ∈ En-Alg assembles to form an (∞, 1)-category of all En-algebras
and their modules, denoted ModEn (or ModEn(C) when we want to emphasize C).
The canonical functor Fin→ Fin∗ adding a base point yields a canonical functor 5

ι : ModEn(C)→ AlgEn(C) which gives rise, for any En-algebra A, to a (homotopy)
pullback square:

(3) A-ModEn //

��

ModEn

ι

��
{A} // En-Alg

We refer to [Lu2, L-HA, F1] for details. Note that the functor ι is monoidal.

Further, if A
f→ B, A

g→ C are two maps of E∞-algebras, and M ∈ B-ModE∞ and
N ∈ C-ModE∞ , then

(4) ι
(
M

L
⊗
A
N
)
∼= B

L
⊗
A
C.

Example 2.11. If n = 1, A-ModE1 is equivalent to the (∞, 1)-category of A-
bimodules and if n = ∞, A-ModE∞ is equivalent to the (∞, 1)-category of left A-
modules, see [Lu2, L-HA] (and Proposition 5.8, Theorem 5.13 below). In general,
A-ModEn can be described in terms of factorization homology of A, see § 5.2.

2.3. Factorization algebras and factorization homology.

Definition 2.12. Given a topological manifold M of dimension n, one can define a
colored operad whose objects are open subsets of M that are homeomorphic to Rn
and whose morphisms from {U1, · · · , Un} to V are empty except when the Ui’s are
mutually disjoint subsets of V , in which case they are singletons. The ∞-operad
associated to this colored operad is denoted by N(Disk(M)), see [L-HA], Remark
5.2.4.7.

Unfolding the definition we find that an N(Disk(M))-algebra on a manifold
M , with value in chain complexes, is a rule that assigns to any open disk6 U a
chain complex F(U) and, to any finite family of disjoint open disks U1, . . . , Un ⊂ V
included in a disk V , a natural map F(U1)⊗· · ·⊗F(Un)→ F(V ). An N(Disk(M))-
algebra is locally constant if for any inclusion of open disks U ↪→ V in X, the
structure map F(U)→ F(V ) is a quasi-isomorphism (see [L-HA, Lu3]) .

Locally constant N(Disk(M))-algebra are actually (homotopy) locally constant
factorization algebras in the sense of Costello [CG, C], see Remark 2.17 below.

A locally constant factorization coalgebra is an N(Disk(M))-coalgebra such that
for any inclusion of open disks U ↪→ V in X, the structure map F(V ) → F(U) is
a quasi-isomorphism.
Notation: we denote FaclcM the (∞, 1)-category of locally constant N(Disk(M))-
algebras (see [CG, G2]). We will also denote N(Disk(M))-Alg the (∞, 1)-category
of N(Disk(M))-algebras (that is of prefactorization algebras).

If A is a locally constant N(Disk(M))-algebra, the rule which to an open disk
D associates the chain complex A(D) can be extended to any open set of M . In

5which essentially forget the underlying module
6i.e. an open subset of M homeomorphic to a Euclidean ball
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fact, Lurie has proved [L-HA, Lu3] that the functor Disk(M)
A−→ k-Mod∞ has a

left Kan extension along the embedding Disk(M) ↪→ Op(M) where Op(M) is the
standard ((∞, 1)-)category of open subsets of M , i.e., with objects the open subsets
of M and morphism from U to V are empty unless when U ⊂ V in which case they
are singletons.

Definition 2.13. Let M be a topological manifold and A be a locally constant
factorization algebra.

Factorization homology is the (∞, 1)-functor Op(M) ⊗ FaclcM → k-Mod∞, de-

noted (M,A) 7→
∫
M
A, given by the left Kan extension7 of Disk(M)

A−→ k-Mod∞.

We say that
∫
M
A is the factorization homology of M with values in A.

Remark 2.14. Factorization homology is also called topological chiral homology
in [L-HA, Lu4, Lu3]. We prefer Francis terminology [F1, AFT, F2] which is justified
by the fact that factorization homology is actually the homology (or said otherwise
derived sections) of factorizations algebras in the sense of Costello [CG] as we
proved [GTZ2], see Remark 2.17 below.

Example 2.15 (Framed manifolds). Let M be a framed manifold, then any En-
algebra determines a locally constant factorization algebra on M (for instance,
see [L-HA, F1, GTZ2, G2] or Theorem 2.20) so that one can define the factoriza-
tion homology

∫
M
A. These locally constant factorization algebras are essentially

constant, in the sense that they satisfy the property that there is a (globally de-
fined) En-algebra A together with natural (with respect to the structure map of the

factorization algebra) quasi-isomorphism A(D)
'→ A for every disk D. Thus, we

call such a factorization algebra the constant factorization algebra on M associated
to A. For instance, for n = 0, 1, 3, 7, there is a faithful embedding of En-algebras
into locally constant factorization algebras over the n-sphere Sn.

For M = Rn, one actually gets an equivalence between all locally constant
factorization algebras over M = Rn and En-algebras, see Theorem 2.29 below.

Example 2.16. The canonical map N(Disk(M))→ N(Fin∗) shows that any E∞-
algebras has a canonical structure of prefactorization algebra on any topological
manifold M which turns out to actually be a locally constant factorization algebra.
This construction is studied in detail (using the Hochschild chain models) in [GTZ2]
and actually extends to define a factorization algebra on any CW -complex, a for-
tiori to any manifold with corners.

Remark 2.17. Let us justify a bit more the terminology of locally constant fac-
torization algebras we are using (hoping it will avoid any possible confusion, also
see [G2, § 4.2]). The notion of locally constant N(Disk(X))-algebra is actually
equivalent to the “full” notion of a locally constant factorization algebra on X in
the sense of Costello [CG, C] which are a similar construction where the Ui are
allowed to be any open subsets, satisfying a kind of “Čech/cosheaf-like” condition
(and still being locally constant in the above sense). Let us now be more precise.

Definition 2.18. A prefactorization algebra is an algebra over the colored op-
erad whose objects are open subsets of X and whose morphisms from {U1, · · · , Un}
to V are empty unless when Ui’s are mutually disjoint subsets of U , in which case
they are singletons.

7the existence of this extension is a non-trivial Theorem of [L-HA]
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The above definition makes sense for any topological space X. Unfolding the
definition, we find that a prefactorization algebra on X, with value in chain com-
plexes, is a rule that assigns to any open set U a chain complex F(U) and, to any
finite family of pairwise disjoint open sets U1, . . . , Un ⊂ V included in an open V ,
a natural map F(U1) ⊗ · · · ⊗ F(Un) → F(V ). These structure maps are required
to satisfy obvious associativity and symmetry conditions, see [CG]. They allow us
to define “Čech-complexes” associated to a cover U of U . Denoting PU the set of
finite pairwise disjoint open subsets {U1, . . . , Un , Ui ∈ U}, it is, by definition the
chain (bi-)complex

Č(U ,F) =
⊕
PU
F(U1)⊗· · ·⊗F(Un)←

⊕
PU×PU

F(U1∩V1)⊗· · ·⊗F(Un∩Vm)← · · ·

where the horizontal arrows are induced by the alternating sum of the natural
inclusions as for the usual Čech complex of a cosheaf (see [CG] or [GTZ2, G2]). The
prefactorization algebra structure also induce a canonical map Č(U ,F)→ F(U).

Definition 2.19. • A prefactorization algebra F on X is said to be a factor-
ization algebra (in the sense of [CG]) if, for all open subsets U ∈ Op(X)
and for every factorizing cover8 U of U , the canonical map Č(U ,F)→ F(U)
is a quasi-isomorphism (see [C, CG]). Again, a factorization algebra is lo-
cally constant if for any inclusion of open disks U ↪→ V inX, the structure
map F(U)→ F(V ) is a quasi-isomorphism.
• In the above Definition, one can replace the symmetric monoidal∞-category

of chain complexes by any symmetric monoidal∞-category (C,⊗) which has
all colimits, sifted limits and such that geometric realization (see [L-HTT])
distributes with respect to the monoidal structure, see [CG, G2].
• A (resp. locally constant) factorization coalgebra on X with value in (C,⊗)

is a (resp. locally constant) factorization algebra on X with value in the op-

posite category (Cop,⊗), that is an object of FacX(Cop) (resp. FaclcX(Cop)).
Notation: we denote FacX(C) the (∞, 1)-category of locally constant factorization

algebras on X with values in (C,⊗) and FaclcX(C) its (∞, 1)-subcategory of locally

constant factorization algebras. We also denote coFacX(C) (resp. coFaclcX(C)) the
(∞, 1)-categories of (resp. locally constant) factorization coalgebras.

In [GTZ2], we proved

Theorem 2.20 ([GTZ2, Theorem 6]). The functor (U,A) 7→
∫
U
A induces an

equivalence of (∞, 1)-categories between locally constant N(Disk(X))-algebra and
locally constant factorization algebras on the manifold X in the sense of [CG].
Further this functor is (equivalent to) the identity functor when restricted to open
disks.

This justifies our terminology of locally constant factorization algebras and fac-
torization homology; further, the extension on any open set U of a (locally constant)
N(Disk(X))-algebra A is precisely given by the factorization homology

∫
U
A, see

loc. cit..

Example 2.21 (Trivial example: the unit factorization algebra k). The unit object
of the symmetric monoidal category of factorization algebras over a CW-complex or

8an open cover of U is factorizing if, for all finite collections x1, . . . , xn of distinct points in U ,

there are pairwise disjoint open subsets U1, . . . , Uk in U such that {x1, . . . , xn} ⊂
⋃k
i=1 Ui
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topological manifold with corners X is the trivial factorization algebra associated
to the ground ring k. We review it here for latter use. We will simply denote it by
k.

Its prefactorization algebra structure is given by k(U) := k for any open set
U ⊂ X and the structure maps are given, for any pairwise disjoint open subsets
U1, . . . , Ur of an open V ⊂ X, by

k(U1)⊗ · · · ⊗ k(Ur) =

r⊗
i=1

k
multiply−→
'

k = k(V )

where the last map is the multiplication in the ring k.

Lemma 2.22. The prefactorization algebra U 7→ k(U) = k is a factorization
algebra. It is further naturally equivalent to the Hochschild chains (Proposition 3.9:

CHU (k)
'−→ k(U) = k

k is by definition locally constant on any manifold and actually a commutative
constant factorization algebra in the terminology of [GTZ2, § 4.2].

Proof of Lemma 2.22. The symmetry and associativity axioms of a prefactorization
algebra follows respectively from the commutativity and associativity of the ring
structure of k. Note that if X is a manifold, k is locally constant by definition
and thus a factorization algebra. Note also that the Hochschild chain functor
(as described in Section 3) induces a factorization algebra U 7→ CHU (A) for any
commutative algebra A by [GTZ2, Theorem 4]. For A = k, and any simplicial model
X• of a space X, one has that CHX•(k) is the differential graded commutative

algebra associated to the constant simplicial k-module n 7→ CHsimp
Xn

(k) ∼= k see
Definition 3.2. Hence the projection CHX• � CHX0(k) = k is a natural (in X•)
quasi-isomorphism of CDGA’s and we obtain this way a natural (in X) equivalence

CHX(k)
'→ k. The commutative diagram (induced by [GTZ2, Lemma 2])

CHV (k)
' // k

⊗r
i=1 CHUi(k)

µU1,...,Ur,V

OO

' //⊗r
i=1 k

multiply

OO

proves that U 7→ k(U) is equivalent to U 7→ CHU (k) and thus is a factorization
algebra since the latter is (of course, the latter can also be checked by direct in-
spection rather easily). �

Remark 2.23 (Alternative definition: parametrized prefactorization alge-
bras). There is a slight variation of the notion of locally constant (pre)factorization
algebras, i.e., locally constant N(Disk(M))-algebras. Following Lurie [L-HA, Re-
mark 5.2.4.8], we let

Definition 2.24. N(Disk(M)′) be the ∞-operad associated to the colored operad
Disk(M)′ whose objects are open embeddings Rn ↪→ M and whose morphisms
Disk(M)′(φ, ψ) are commutative diagrams

Rn h //

φ !!

Rn

ψ}}
M
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where f is an open embedding.
An N(Disk(M)′)-algebra A is said to be locally constant if the structure map

A(h) : A(φ) → A(ψ) is a quasi-isomorphism for any open embedding h such that
ψ ◦ h = φ as in the above diagram.

Note that the (forgetful) functor ι : φ 7→ φ(Rn) is an equivalence of categories.
Hence,

Proposition 2.25. The functors ι∗ : Disk(M)
lc

-Alg → Disk(M)′-Alg and ι∗ :

FaclcM → Disk(M)′
lc

-Alg are equivalences of (∞, 1)-categories.

Similarly, the functors ι∗ : Disk(M)
lc

-coAlg → Disk(M)′-Alg and ι∗ : FaclcM →
Disk(M)′

lc
-coAlg are equivalences of (∞, 1)-categories.

We will refer to locally constant Disk(M)′-algebras as locally constant parametrized
factorization algebras. By the above proposition 2.25, the two notions of factoriza-
tions algebras are essentially the same.

Unfolding Definition 2.24, we see that a locally constant parametrized factoriza-
tion algebra F is thus a rule which associates to each embedding φ : Rn → M a
chain complex F(φ) with natural maps F(φ1)⊗ · · · ⊗ F(φr)→ F(ψ) associated to
any open embedding h :

∐r
i=1 Rn → Rn such that ψ ◦ h =

∐r
i=1 φi :

∐r
i=1 Rn →M

(satisfying the obvious associativity and symmetry conditions). Further, for any
h : φ 7→ ψ (i.e. ψ ◦ h = φ), the structure map F(φ) → F(ψ) is required to be a
quasi-isomorphism.

Definition 2.26. Let U be an open subset of X. By restricting to open subsets
of U , a (locally constant) factorization algebra A on X has a canonical restriction
A|U : Op(U) 3 V 7→ A(V ) to a (locally constant) factorization algebra on U .

Factorization algebras satisfy a local-to-global property and can thus be defined
out of their restriction to a basis or descent/gluing data. Indeed, let U be a basis
for the topology of a manifold M which is stable by finite intersections and is also
a factorizing cover (as in Remark 2.17).

Definition 2.27. A U-prefactorization algebra is defined similarly to a prefactor-
ization algebra on M , except that we are only considering opens that belongs to U in
the definition. In other words, it is an algebra over N

(
DiskU (M)

)
where DiskU (M)

is the colored sub-operad of Disk(M) whose only colors are those consisting of opens
in U .

Similarly, a U-factorization algebra is defined similarly to a factorization algebra
on M , except that we are only considering opens that belongs to U in the definition
(in other words, it is a U-prefactorization algebra satisfying the descent condition
of Remark 2.17).

We refer to[CG, G2] for more details.

Proposition 2.28 (Costello-Gwilliam [CG]). Let F be a U-factorization alge-
bra. There is an unique9 factorization algebra iU∗ (F) on M extending F10 (that
is equipped with a quasi-isomorphism of U-factorization algebras iU∗ (F)→ F).

9up to natural equivalence
10More precisely, for an open set V ⊂ X, one has iU∗ (F)(V ) := Č(UV ,F) where UV is the

open cover of V consisting of all open subsets of V which are in U
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In fact the canonical functor FacU (C) → FacM (C) is an equivalence of ∞-
categories.

More generally, if A is a factorization algebra on X and U = (Ui)i∈I is a cover of
X, then A can be uniquely recovered by the data of the factorization algebras A|Ui
restricted to the Ui’s (thanks to the Čech condition applied to suitable covers). In
fact, any family of factorization algebras Fi on Ui, satisfying natural compatibility
conditions on the intersections of the Ui’s, extends uniquely into a factorization
algebra on X; we refer to Costello-Gwilliam [CG, Section 4] (and [G2, § 5]) for
details on this descent property of factorization algebras.

2.4. En-algebras as factorization algebras. Theorem 5.2.4.9 of [L-HA] (also
see [Lu3, GTZ2]) provides an equivalence between En-algebras and locally constant
factorization algebra on the open disk Dn:

Theorem 2.29. Let C be a symmetric monoidal (∞, 1)-category. There is a natural
equivalence of (∞, 1)-categories

En-Alg(C) ∼= FaclcRn(C).
Similarly there is an equivalence between the (∞, 1)-categories of locally constant
factorization coalgebras on Rn and the one of En-coalgebras.

In particular, an En-algebra can be seen as an n-dimensional (topological) field
theory (over the space-time manifold Rn), providing an invariant for framed n-
manifolds which is precisely computed by factorization homology.

Let X, Y be topological spaces and f : X → Y be continuous. There is a
pushforward functor

(5) f∗ : FacX(C)→ FacY (C)
that was constructed in [CG]. It is given, for F ∈ FacX(C) and V ∈ Op(Y ), by
f∗(F)(V ) = F(f−1(V )). In particular, let p : M → pt be the canonical map from
M to a point and F be a factorization algebra on M .

Notation: we also denote p∗(F) the object p∗(F)(pt) ∼= F(M). If F is locally
constant, we have natural equivalences

(6) p∗(F) ∼= F(M) ∼=
∫
M

F .

Assume X, Y are manifolds and let π : X ×Y → X be the canonical projection.
Then, there is a factorization of the pushforward functor:

FaclcX×Y (C)
� _

��

π∗ // FaclcX
(
FaclcY (C)

)
� _

��

(Y→pt)∗ // FaclcX(C)� _

��
FacX×Y (C) π∗ // FacX

(
FacY (C)

) (Y→pt)∗ // FacX(C)

where the vertical arrows are induced by the fully faithfull inclusion of the locally
constant factorization algebras inside all factorization algebras. The right horizontal
arrows are induced by the pushforward along the canonical map Y → pt. Here
the fact that the pushforward of a locally constant factorization algebra is locally
constant follows from the fact that the fibers are all naturally identified with the
same manifold Y . We refer to [G2] for more details.
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The fact that locally constant factorization algebras on Rn are En-algebras
implies that, when Y = Rn, the pushforward factors through a functor π∗ :
FaclcX×Rn → FaclcX(En-Alg) see [GTZ2]. In particular, we can take X = Rm.
The following ∞-category version of Dunn’s Theorem was proved by Lurie [L-HA]
(and [GTZ2] for the pushforward interpretation):

Theorem 2.30 (Dunn’s Theorem). There is an equivalence of (∞, 1)-categories
Em+nAlg ∼= En-Alg(Em-Alg).

Under the equivalence En-Alg ∼= FaclcRn (Theorem 2.29), the above equivalence

is realized by the pushforward π∗ : FaclcRm×Rn → FaclcRm(En-Alg) associated to the
canonical projection π : Rm × Rn → Rm.

3. Higher Hochschild (co)chains for E∞-algebras

In this section we define and study higher Hochschild (co)chains modeled over
spaces for E∞-algebras with values in E∞-modules.

3.1. Factorization homology of E∞-algebras and higher Hochschild chains.
Factorization homology with values in E∞-algebras has special properties. It be-
comes an homotopy invariant and can be defined over any space, providing an
homology theory for spaces. Indeed, it identifies with the Hochschild chains mod-
eled on a space and with values in an E∞-algebra, see Theorem 3.13 below. We will
denote (X,A) 7→ CHX(A) the latter construction which we explain further in this
section. The reader familiar with factorization homology for commutative algebras
can skip it and keep in mind that CHX(A) means factorization homology extended
to spaces.

The Hochschild chains CHX•,•(A,A) over a simplicial set X• with value in a
CDGA A is defined in [P]. As explained in [GTZ2], it can be defined using the
PROPic definition of commutative (differential graded) k-algebras as follows. A
CDGA over k is a strict symmetric monoidal functor A : Fin → k-Mod from
the category of finite sets (with disjoint union for the monoidal structure) to the
category of chain complexes (with tensor product as the monoidal structure). Given
a finite simplicial set ∆op → Fin we can compose these two functors to get a
simplicial k-module. The geometric realization of this simplicial k-module is the
Hochschild complex modeled on X. In fact one can do better. A strictly symmetric
monoidal functor A : Fin → k-Mod has a canonical lift to A : Fin → k-Alg,
along the forgetful functor k-Alg → k-Mod. This is due the simple fact that for a
commutative algebra A, the multiplication m : A ⊗ A → A is a map of algebras
or, said otherwise, the fact that the tensor product is a coproduct in CDGA. Thus,
the above procedure gives rise to a simplicial CDGA whose geometric realization
is the Hochschild complex modeled on X•, with a canonical CDGA structure. In
the classical example X = S1, whereby we get the classical Hochschild complex,
this CDGA structure is given by the shuffle product on CH•(A,A). Another way
of saying this is to say that that CDGA is tensored over simplicial sets and that
Hochschild chains over X• with values in A is simply the tensor A�X• (see [L-HA,
L-HTT, EKMM, Ke, MCSV] for details on tensored categories over spaces and
Remark 2.7). We now discuss how all of the above generalizes to the case of E∞-
algebras.

Recall from Section 2 that the (∞, 1)-category of E∞-algebras (with value in
chain complexes) is equivalent to the (∞, 1)-category Fun⊗(N(Fin), k-Mod∞) of
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(lax) monoidal functors from (the ∞-category associated to) Fin to the (∞, 1)-
category of chain complexes (see Lurie [Lu2, L-HA, KM]). We denote(

X 7→ CHsimp
X (A)

)
∈ Fun⊗(N(Fin), k-Mod∞)

the11 monoidal functor associated to an E∞-algebra A. This functor extends nat-
urally to a functor Fun⊗(N(Set), k-Mod∞) (where Set is the category of sets) by

taking colimits; that is to say, X 7→ lim−→
Fin3K→X

CHsimp
K (A).

By Proposition 2.9, CHsimp
K (A) has a natural structure of E∞-algebras; more

precisely, the functor
(
X 7→ CHsimp

X (A)
)

factors as

N(Fin) −→ E∞-Alg
forget−−−−→ k-Mod∞.

We simply denote
(
X 7→ CHsimp

X (A)
)
∈ Fun⊗(N(Set), E∞-Alg) the induced lift.

Remark 3.1. Fixing a set X, CHX(A) is (functorially) quasi-isomorphic to the
tensor product A⊗X (where A is viewed as a chain complex). Note that this con-
struction (of the underlying chain complex structure) is the same as the one in[GTZ,
Section 2.1] in the case of CDGAs. However the functorial structure involves higher
homotopies and not only the multiplication and seems difficult to write explicitly
on this particular choice of cochain complex.

Let DK : sk-Mod∞ → k-Mod∞ be the Dold-Kan functor from the (∞, 1)-
category of simplicial k-modules to the chain complexes. The Dold-Kan functor
refines to a functor sE∞-Alg→ E∞-Alg from simplicial E∞-algebras to differential
graded E∞-algebras which preserves weak-equivalences (see [M1, Section 3]).

Definition 3.2. The derived Hochschild chains of an E∞-algebra A and a simplicial
set X• is

CHX•(A) := DK
(

lim−→
Fin3K→X•

CHsimp
K (A)

)
.

Remark 3.3. In the case where the E∞-algebra A is strict, i.e. a CDGA, it follows
from Corollary 3.7 below that CHX•(A) is quasi-isomorphic to the Hochschild chain
complex over X• described in details in[GTZ, Section 2.1] (also see[P, G1, GTZ2]).

Proposition 3.4. The derived Hochschild chain (X•, A) 7→ CHX•(A) lifts as a
functor of (∞, 1)-categories

CH : sSet∞ × E∞-Alg −→ E∞-Alg.

Further, it is the tensor of A and X• in E∞-Alg, i.e., there is a natural equivalence
CHX•(A) ∼= A�X•. In particular,

(7) MapsSet∞
(
X•,MapE∞-Alg(A,B)

) ∼= MapE∞-Alg(CHX•(A), B).

Note that we could also just have used the tensor definition A � X• to define
higher Hochschild chains.

Proof of Proposition 3.4. Proposition 3.6 below implies that the derived Hochschild
chain functor is invariant under (weak) equivalences of E∞-algebras and simplicial
sets and thus lifts as an ((∞, 1)-)functor sSet∞ × E∞-Alg→ k-Mod∞, (X•, A) 7→
CHX•(A). Since the tensor products of E∞-algebras is an E∞-algebra, CHsimp

K•
(A)

11it is unique up to contractible choices
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is a simplicial E∞-algebra for any simplicial set K•. Since the (refined) Dold-
Kan functor sE∞-Alg → E∞-Alg preserves weak-equivalences [M1], the derived
Hochschild chain functor lifts as a functor of (∞, 1)-categories CH : sSet∞ ×
E∞-Alg → E∞-Alg. By Proposition 2.8, CHX•(A) ∼= A � X• in sE∞-Alg from
which the second assertion of the Proposition follows after passing to geometric
realization. �

Remark 3.5. There is a derived functor interpretation of the above Definition 3.2.
Recall that to any simplicial set X•, one can associate a canonical E∞-coalgebra
structure on its chains [Ma, BF], denoted C∗(X•) (Example 2.6). Dually to the
case of algebras, an E∞-coalgebra C defines a contravariant monoidal functor X 7→
CHsimpco

X (C), i.e., an object of Fun⊗(N(Fin)op, k-Mod∞).

In particular, an E∞-coalgebra C defines a right module over the ∞-operad E⊗∞
and an E∞-algebra a left module over the ∞-operad E⊗∞. We can thus form their

(derived) tensor products C
L
⊗
E⊗∞

A which is computed as a (homotopy) coequalizer:

C
L
⊗
E⊗∞

A ∼= hocoeq
( ∐
f :{1,...,q}→{1,...,p}

C⊗p ⊗ E⊗∞(q, p)⊗A⊗q ⇒
∐
n

C⊗n ⊗A⊗n
)

where the maps f : {1, . . . , q} → {1, . . . , p} are maps of sets. The upper map in
the coequalizer is induced by the maps f∗ : C⊗p ⊗ E⊗∞(q, p) ⊗ A⊗q → C⊗q ⊗ A⊗q
obtained from the coalgebra structure of C and the lower map is induced by the
maps f∗ : C⊗p ⊗ E⊗∞(q, p)⊗A⊗q → C⊗p ⊗A⊗p induced by the algebra structure.

Proposition 3.6. Let X• be a simplicial set and A be an E∞-algebra. There is a
natural equivalence

CHX•(A) ∼=C∗(X•)
L
⊗
E⊗∞

A

∼=hocoeq
( ∐
f :{1,...,q}→{1,...,p}

C∗(X•)
⊗p ⊗ E⊗∞(q, p)⊗A⊗q ⇒

∐
n

C∗(X•)
⊗n ⊗A⊗n

)
Proof. Note that the E∞-coalgebra structure on C∗(X•) is given by the functor
N(Fin∗)

op → k-Mod∞ defined by I 7→ k
[
HomFin(I,X•)

]
. The rest of the proof

now is the same as in [GTZ2, Proposition 4]. �

In [GTZ2], a functor CHcdga : sSet∞ × CDGA∞ → CDGA∞ was defined12.
There is a forgetful functor CDGA∞ → E∞-Alg. Proposition 3.6, Proposition 4

in [GTZ2] and the equivalence E⊗∞
'→ Comm⊗ yield

Corollary 3.7. If A is a commutative differential graded algebra, the following
diagram is commutative in the (∞, 1)-category Fun(sSet∞ × CDGA∞, E∞-Alg):

sSet∞ × CDGA∞
CHcdga //

��

CDGA∞

��
sSet∞ × E∞-Alg

CH // E∞-Alg

In particular, CHcdga
X•

(A) is naturally equivalent to CHX•(A).

12it was simply denoted CH in loc. cit.
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In other words, the corollary means that the functors CHcdga and CH are equiv-
alent (for a CDGA).

Remark 3.8. In the sequel we will use the equivalence given by corollary 3.7 to
identify the functors CH and CHcdga without further notice.

There is an equivalence of (∞, 1)-categories sSet∞
∼
�
∼

Top∞ induced by the

underlying Quillen equivalence between sSet and Top [GJ, Ho]. The left and
right equivalences are respectively induced by the standard singular set functor
X 7→ S•(X) := Map(∆•, X) and geometric realization X• 7→ |X•| functors. In
particular, we can replace simplicial sets by topological spaces in Definition 3.2 and
Proposition 3.6 to get the following analogue of Proposition 3.4. Letting C∗(X) be
the natural E∞-coalgebra structure on the singular chains of X, we deduce from
Proposition 3.4 and Proposition 3.6:

Proposition 3.9. The derived Hochschild chain with value in an E∞-algebra A
modeled on a space X given by

CHX(A) := DK
(

lim−→
Fin3K→S•(X)

CHsimp
K (A)

)
∼= C∗(X)

L
⊗
E⊗∞

A

induces a (∞, 1)-functor CH : (X,A) 7→ CHX(A) from Top∞×E∞-Alg to E∞-Alg.
Further, one has a natural equivalence A�X ∼= CHX(A); in particular

(8) MapTop∞
(
X,MapE∞-Alg(A,B)

) ∼= MapE∞-Alg(CHX(A), B).

Remark 3.10. Since (X,A) 7→ CHX(A) ∼= A �X is a functor of both variables,
CHX(A) has a natural action of the topological monoid MapTop∞(X,X) (and
in particular of the group Homeo(X)). This means that there is a monoid map
MapTop∞(X,X) → MapE∞-Alg(CHX(A), CHX(A)); in other words a chain map
C∗
(
MapTop∞(X,X)

)
⊗CHX(A)→ CHX(A) which makes CHX(A) aMapTop∞(X,X)-

algebra in E∞-Alg (for the monad associated to the monoid MapTop∞(X,X)).

Similarly, given any map f : X ×K → Y of topological spaces, we get a canon-
ical map f̃ : K → MapE∞-Alg(CHX(A), CHY (A)) in Top∞ as follows. By Propo-
sition 3.9, the map f∗ : CHX×K(A) → CHY (A) yields a natural map of mapping
spaces:

(9) τf : MapE∞-Alg

(
CHY (A), CHY (A)

)
(f∗)

∗

−→ MapE∞-Alg

(
CHX×K(A), CHY (A)

)
∼= MapTop∞

(
K,MapE∞-Alg(CHX(A), CHY (A))

)
where the last equivalence follows from Proposition 3.9 (8) and Corollary 3.29.(4)
below. Applying the map (9) to the identity idCHY (A) we get the map

(10) f̃ := τf (idCHY (A)) ∈MapTop∞
(
K,MapE∞-Alg(CHX(A), CHY (A))

)
.

In particular, the map f̃ yields a map

(11) f̃∗ : C∗(K)⊗ CHX(A)→ CHY (A)

in k-Mod∞.
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The map f̃ (respectively f̃∗) are functorial in the obvious sense. Indeed, let
f : K ×X → Y , g : K × Y → Z, j : L → K be continuous maps. Out of f and g
we can form the map

K ×X (pK ,f)−→ K × Y g−→ Z

where pK : K ×X → K is the canonical projection while out of j and f , we can
form the composition

L×X j×idX−→ K ×X f−→ Y.

We thus get the maps f̃ , g̃ as well as

˜(f ◦ (j × idX)) : L→MapE∞-Alg(CHX(A), CHY (A))
)

and ˜(g ◦ (pK , f)) : K → MapE∞-Alg(CHX(A), CHZ(A))
)
. The functoriality rela-

tion are given by:

Proposition 3.11. The following two diagrams

K
(f̃ ,g̃) //

˜(g◦(pK ,f))
--

MapE∞-Alg(CHX(A), CHY (A))×MapE∞-Alg(CHY (A), CHZ(A))

−◦−
��

MapE∞-Alg(CHX(A), CHZ(A))

,

where the vertical arrow is the composition of morphisms, and

L

j

��

˜(f◦(j×idX)) // MapE∞-Alg(CHX(A), CHY (A))

K
f̃

44

are commutative.

Proof. The result follows from the following two factorizations

(f ◦ (j × idX))∗ : CHL×X(A)
(j×idX)∗−→ CHK×X(A)

f∗−→ CHY (A),

(g ◦ (pK , f))∗ : CHK×X(A)
(pK×f)∗−→ CHK×Y (A)

g∗−→ CHZ(A)

which in turn follow from Proposition 3.9. �

Example 3.12. Consider a commutative diagram of spaces

L×K ×X
pL×f //

(q×idX)

��

L× Y

g

��
R×X h // Z

where pL : L × K × X → L is the canonical projection, f : K × X → Y and
q : L × K → R are continuous maps. Then by Proposition 3.11, we get that the
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following diagram is commutative

C∗(L×K)⊗ CHX(A)
f̃∗ //

q∗⊗id
��

C∗(L)⊗ CHY (A)

g̃∗

��
C∗(R)⊗ CHX(A)

h̃∗ // CHZ(A).

As we previously mentioned, the higher Hochschild functor (modeled on spaces)
agrees with factorization homology (see [L-HA, F1] and Definition 2.13) for E∞-
algebras. Indeed the following result (whose CDGA version was proved in [GTZ2])
was proved by Francis [F1].

Theorem 3.13. Let M be a manifold of dimension m and A be an E∞-algebra
viewed as an N(Disk(M))-algebra (by restriction of structure, Example 2.16). Then,
the factorization homology

∫
M
A of M with coefficients in A is naturally equivalent

to CHM (A).

Proof. The proof is the same as the ones for CDGA’s in [GTZ2] (see Theorem 6
and Corollary 9 in loc. cit.) using the axioms of Theorem 3.28. Further, as pointed
out by John Francis [F1], the proof also applies to topological manifolds. �

In particular, it follows that the factorization homology of an E∞-algebra and
framed manifold M is canonically an E∞-algebra which is independent of the
choices of framing, and further, can be extended functorially with respect to all
continuous maps h : N →M .

Remark 3.14. There is also a nice interpretation of Hochschild chains over spaces
in terms of derived algebraic geometry. Let dStk be the (model) category of derived
stacks over the ground ring k described in details in [TV, Section 2.2]. This category,
which admits internal Hom’s denoted by RMap(F,G) following [TV, TV2], is an
enrichment of the homotopy category of spaces. Indeed, any simplicial set X•
yields a constant simplicial presheaf E∞-Alg→ sSet defined by R 7→ X• which, in
turn, can be stackified. We denote X the associated stack, i.e. the stackification of
R 7→ X•, which depends only on the (weak) homotopy type of X•. It is sometimes
called the Betti stack of X•.

For a (derived) stack Y ∈ dStk, we denote OY its functions, i.e., OY :=
RHom(Y,A1), (see [TV]).

Corollary 3.15. Let R = RSpec(R) be an affine derived stack (for instance an
affine stack) [TV] and X be the stack associated to a space X. Then the Hochschild
chains over X with coefficients in R represent the mapping stack RMap(X,R).
That is, there are canonical equivalences

ORMap(X,R)
∼= CHX(R), RMap(X,R) ∼= RSpec

(
CHX(R)

)
Proof. The proof is analogous to the one of [GTZ2, Corollary 6.4.4]. �

Note that if a group G acts on X, the natural action of G on CHX(A) (see
Remark 3.10) identifies with the natural one of G on RMap(X,R) under the equiv-
alence given by Corollary 3.15.
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3.2. Higher Hochschild (co)chains with values in E∞-modules. We now
consider a dual notion of the Hochschild chain functor, which is well defined in the
E∞-case.

Let ε : pt→ X• be a base point of X•. The map ε yields a map of E∞-algebras

A ∼= CHpt(A)
ε∗→ CHX•(A) and thus makes CHX•(A) an A-module. Let M be

another E∞-A-module.

Definition 3.16. The (derived) Hochschild cochains of an E∞-algebra A with
value in M over (the pointed simplicial set) X• is given by

CHX•(A,M) = HomA(CHX•(A),M),

the (derived) chain complex of the underlying left E1-A-module homomorphisms.

The definition above depends on the choice of the base point even though we do
not write it explicitly in the definition. We define similarly CHX(A,M) for any
pointed topological space X.

Remark 3.17. According to Theorem 5.13, one can also alternatively consider the
chain complex of E∞-A-modules in Definition 3.16.

Definition 3.18. The Hochschild chains of an E∞-algebra A with values in M
over (the pointed simplicial set) X• is defined as

CHX•(A,M) = M
L
⊗
A
CHX•(A)

the relative tensor product of E∞-A-modules (as defined, for instance, in [L-HA,
Section 3.3.3] or [KM]).

Remark 3.19. Any E∞-A-module has an underlying E1-module structure given by
the forgetful functor A-ModE∞ → A-ModE1 hence both a left and right A-module
structure. Thus, given two E∞-A-modules M,N , one can form their relative tensor
product M ⊗L

AN where M is viewed as a right A-module, N as a left A-module and
A as an E1-algebra. According to Theorem 5.13 and [L-HA, Section 4.4.1] or [KM,
Section 5], this tensor is equivalent (as an object of k-Mod∞) to the relative tensor
product computed in E∞-A-modules. Hence, the tensor product of Definition 3.18
can be computed using this alternative definition.

Since the based point map ε∗ : A → CHX•(A) is a map of E∞-algebras, the
canonical module structure of CHX•(A) over itself induces a module structure on
CHX•(A,M) over CHX•(A) after tensoring by A (also see [KM, Part V], [L-HA]):

Lemma 3.20. Let M be in A-ModE∞ , that is, M is an E∞-A-module. Then
CHX•(A,M) is canonically a CHX•(A)-E∞-module.

Remark 3.21. By definition, if A is endowed with its canonical A-E∞-module
structure, the natural map CHX•(A,A) ∼= A ⊗L

A CHX•(A) → CHX•(A) is an
equivalence of CHX•(A)-modules. Hence, tensoring by M⊗A−, we get a canonical
lift of the relative tensor products M ⊗L

A CHX•(A), computed as a relative tensor
product of left and right modules over A seen as an E1-algebra, to a CHX•(A)-
E∞-module as well.

Proposition 3.22. The derived Hochschild chain CHX•(A,M) with value in an
E∞-algebra A and an A-module M over a space X• given by Definition 3.18 induces
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a functor of (∞, 1)-categories CH : (X•,M) 7→ CHX•(ι(M),M) from sSet∗∞ ×
ModE∞ to ModE∞ .

The derived Hochschild cochains CHX•(A,M) with value in an E∞-algebra A
and an A-module M over a space X• given by Definition 3.16 induces a functor of
(∞, 1)-categories (X•,M) 7→ CHX•(A,M) from sSet∗

op
∞×A-ModE∞ to A-ModE∞ ,

which is further contravariant13 with respect to A.

Proof. It follows from Lemma 3.20 and § 3.1. The fact that homomorphisms of
A-E∞-modules have a canonical structure of A-E∞-modules follows from the same
argument as for the tensor product above or from [KM, Theorem V.8.1]. �

Remark 3.23. As usual, one obtains a similar version of the above Definition 3.18
and Lemma 3.20 for pointed topological space X.

Remark 3.24. If A is a CDGA and M a left A-module, similarly to Corollary 3.7,
there are natural equivalences

CHcdga
X•

(A,M) ∼= CHX•(A,M), CHX•
cdga(A,M) ∼= CHX•(A,M)

where CHcdga
X•

(A,M) and CHX•
cdga(A,M) are the usual higher Hochschild chain and

cochain functors for CDGA’s and their modules defined respectively in [P] and [G1].

3.3. Axiomatic characterization. The axiomatic approach to Hochschild func-
tors over spaces for CDGA’s studied in the authors’ previous work [GTZ2] extends
formally to E∞-algebras as well. It is actually an immediate corollary of the fact
that E∞-Alg (as well as any presentable (∞, 1)-category) is tensored over simplicial
sets in a unique way (up to homotopy). We now recall quickly the axiomatic char-
acterization (similar to the Eilenberg-Steenrod axioms) and some consequences for
Hochschild theory over spaces with value in ModE∞ . A similar story for factoriza-
tion homology of En-algebras has been developed recently by Francis [F2, AFT].

We first collect the axioms characterizing the (derived) Hochschild chain theory
over spaces into the following definition. Let Forget : Top∗∞ → Top∞ be the
functor that forget the base point.

Definition 3.25. An E∞-homology theory14 is a pair of ∞-functors CA : Top∞×
E∞-Alg → E∞-Alg, denoted (X,A) 7→ CAX(A), and CM : Top∗∞ ×ModE∞ →
ModE∞ , denoted (X,M) 7→ CMX(M), fitting in a commutative diagram

(12) Top∗∞ ×ModE∞
CM //

Forget×ι
��

ModE∞

ι

��
Top∞ × E∞-Alg

CA // E∞-Alg

satisfying the following axioms:

i) value on a point: there is a natural equivalence CMpt(M) ∼= M inModE∞ ;
ii) monoidal: the natural map

CMX(M)⊗ CAY (ι(M))
'−→ CMX

∐
Y (M)

(where X ∈ Top∗∞ and Y ∈ Top∞) is an equivalence.

13using the canonical functor (similar to the one of Example 2.2) f∗ : B-ModE∞ → A-ModE∞

associated to any E∞-algebras map f : A→ B
14with values in the symmetric monoidal (∞, 1)-category (k-Mod∞,⊗)
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iii) excision: CM commutes with homotopy pushout of spaces, i.e., there is
a canonical equivalence

CMX∪hZY
(M) ∼= CMX(M)

L
⊗

CAZ(ι(M))
CAY (ι(M))

where X ∈ Top∗∞, Y,Z ∈ Top∞.

Remark 3.26. Since any E∞-algebra is canonically a module over itself, there is
also a canonical functor φ : E∞-Alg → ModE∞ , hence a functor

(
−
∐
{∗}
)
× φ :

Top∞ × E∞-Alg → Top∗∞ ×ModE∞ giving rise, by composition with ι ◦ CM to
a functor ψ : Top∞ × E∞-Alg→ E∞-Alg. By axioms i) and ii) in Definition 3.25
and commutativity of the diagram (12), we get a natural equivalence

ψX(A) ∼= φ(A)⊗ CAX(A).

Hence, the functor CA is actually completely defined by the functor CM.

Remark 3.27. We also define a generalized E∞-homology theory to be a triple
of functors F : ModE∞ → ModE∞ , CA : Top∞ × E∞-Alg → E∞-Alg and CM :
Top∗∞ ×ModE∞ → ModE∞ satisfying all properties as in Definition 3.25 except
that the value on a point axiom is modified by requiring a natural equivalence
CMpt(M) ∼= F (M) in ModE∞ .

The next theorem shows that higher Hochschild homology theory is the unique
functor satisfying the assumptions of Definition 3.25.

Theorem 3.28. (1) The derived Hochschild chains functors CH : Top∞ ×
E∞-Alg→ E∞-Alg (see Proposition 3.9) and the derived Hochschild chains
with value in a module CHX : Top∗∞ ×ModE∞ → ModE∞ (see Proposi-
tion 3.22) form a E∞-homology theory in the sense of Definition 3.25.

(2) Any E∞-homology theory (in the sense of Definition 3.25) is naturally
equivalent to derived Hochschild chains, i.e., there are natural equivalences
CAX(A) ∼= CHX(A) and CMX(M) ∼= CHX(ι(M),M).

Proof. This is essentially implied by the fact that CHX(A) ∼= A�X is the tensor
of A with the space X and that such a tensor is defined uniquely, see [L-HTT,
Corollary 4.4.4.9]. Note that the first assertion follows from Proposition 3.22 and
Proposition 3.9. The proof of the uniqueness follows from the proofs of Theorem
4.2.7 and Theorem 4.3.1 in [GTZ2]. The excision and the value on a point axioms
applied to X = Z = pt show that there is a natural equivalence

CMY (M) ∼= M
L
⊗
ι(M)
CAY (ι(M))

which reduces to proving the assertion for CA. Since ι : ModE∞ → E∞-Alg
is monoidal, CA is monoidal. Similarly, the natural equivalence(4) implies that
CA satisfies the excision axiom (in the category of E∞-algebras). Now the proof
of [GTZ2, Theorem 2] applies verbatim. The argument boils down to the fact that
Top∞ is generated by a point using coproducts and homotopy pushouts. �

We now list a few easy properties derived from the above Theorem 3.28.

Corollary 3.29. (1) The derived Hochschild chain functor is the unique func-
tor Top∞ × E∞-Alg→ E∞-Alg satisfying the following three axioms
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(a) value on a point: There is a natural equivalence of E∞-algebras
CHpt(A) ∼= A.

(b) coproduct: There are canonical equivalences

CH∐
I

(Xi)(A)
'←− lim−→

K ⊂ I
K finite

⊗
k∈K

CHXk(A)

(c) homotopy glueing/pushout: there are natural equivalences

CHX∪hZY
(A)

'←− CHX(A)⊗L
CHZ(A) CHY (A).

(2) (generalized uniqueness) Let F : ModE∞ → ModE∞ , CA : Top∞ ×
E∞-Alg→ E∞-Alg and CM : Top∗∞×ModE∞ →ModE∞ be a generalized
E∞-homology theory. Then there is a natural equivalence

CMX(M) ∼= CHX

(
ι(F (M)), F (M)

)
.

(3) (commutations with colimits) The derived Hochschild chains functors
CH : Top∞ × E∞-Alg → E∞-Alg and CH : Top∗∞ ×ModE∞ → ModE∞

commutes with finite colimits in Top∞ and all colimits in ModE∞ , that is
there are natural equivalences

CH lim−→
F

Xi(ι(M),M) ∼= lim−→
F

CHXi(ι(M),M) (for a finite category F),

CHX( lim−→Ai) ∼= lim−→CHX(Ai).

(4) (product) Let X, Y be pointed spaces, M ∈ ModE∞ and A = ι(M) ∈
E∞-Alg. There is a natural equivalence

CHX×Y (A,M)
∼→ CHX (CHY (A), CHY (A,M)))

in ModE∞ .

Proof. The proof of the first assertion follows directly from Theorem 3.28 by ap-
plying the monoidal functor ι. The proof of the other assertions are the same as
the analogous result for CDGA’s proved in [GTZ2]. �

3.4. Higher Hochschild (co)chains models for mapping spaces. This section
is devoted to the relationship in between higher Hochschild chains and mapping
spaces. In particular, we prove an E∞-algebra version of the Chen iterated integral
morphism studied in [GTZ].

Let A be an E∞-algebra. Recall that by the coproduct axiom and functoriality
of Hochschild chains (see Theorem 3.28, Corollary 3.29), there is a natural equiv-
alence A ⊗ A ∼= CHS0(A) of E∞-algebras as well as a natural E∞-algebras map
CHS0(A)→ CHpt(A) ∼= A.

Lemma 3.30. Let X,Y be topological spaces and C∗(X), C∗(Y ) be their E∞-
algebras of cochains. Denote πX : X×Y → X and πY : X×Y → Y the projections
onto the first and second factors. The composition,

(13) C∗(X)⊗ C∗(Y )
π∗X⊗π

∗
Y−→ C∗(X × Y )⊗ C∗(X × Y )

'→ CHS0

(
C∗(X × Y )

)
−→ CHpt

(
C∗(X × Y )

) ∼= C∗(X × Y )
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is a natural morphism of E∞-algebras. It is further an equivalence under the as-
sumption that H∗(Y ) (or H∗(X)) is finitely generated in each degree.

Proof. That the maps involved are natural (in X,Y ∈ Top∞) maps of E∞-algebras
follows from the functoriality of X 7→ C∗(X) and the functorial and monoidal
properties of the higher Hochschild derived functor (see Theorem 3.28).

We now prove that the map (13) is an equivalence under the assumption that
that H∗(Y ) is projective, finitely generated in each degree. The idea is to prove
that the map (13) is homotopy equivalent to the cross product.

Note that if the ground ring k is a field of characteristic zero, the map (13)
induces a map H∗(X) ⊗H∗(Y ) → H∗(X × Y ) which is easily identified with the
Künneth morphism since for a graded commutative algebra, the map A ⊗ A ∼=
CHS0(A)→ CHpt(A) ∼= A is given by the multiplication in A (by Corollary 3.7).

For a general ground ring of coefficients, note that as a mere E1-algebra (via
the forgetful functor E∞-Alg ↪→ E1-Alg), the singular cochain complex C∗(X) is
endowed with the (strictly) associative algebra structure given by the cup-product.
Let D1

+, D
1
− be two open disjoint sub-intervals of D1 and i : D1

−
∐
D1

+ ↪→ D1

be the inclusion map. By definition (see [L-HA, Lu3, F1]), for any differential
graded associative algebra (A,m), the canonical map of chain complexes (and not
E1-algebras)

A⊗A ∼=
∫
D1
−

∐
D1

+

A
i∗−→
∫
D1

A ∼= A

is the multiplication map m : A ⊗ A → A defining the E1-structure of A. If
furthermore (A,m) is actually an E∞-algebra, by Theorem 3.13 and functoriality
of derived Hochschild functor, there is a (homotopy) commutative diagram of chain
complexes

A⊗A

m

��

'
%%

'

))

'

**∫
D1
−

∐
D1

+
A

' //

i

��

CHD1
−

∐
D1

+
(A)

' //

i∗

��

CHS0(A)

��∫
D1 A

'

xx

' // CHD1(A)
' //

'

qq

CHpt(A)

'ooA

and thus, the map (13) is homotopy equivalent, as a map of chain complexes, to

(14) C∗(X)⊗ C∗(Y )
π∗X⊗π

∗
Y−→ C∗(X × Y )⊗ C∗(X × Y )

∪−→ C∗(X × Y ).

The cochain complex structure of C∗(X) is the normalization of the cosimplicial
k-module n 7→ Cn(X) so that the above map (14) is the (dual of the) Alexander-
Whitney diagonal (in k-Mod∞):

(15) AW : C∗(X)⊗ C∗(Y ) ↪→
(
C∗(X)⊗ C∗(Y )

)∨ AW∨−→ C∗(X × Y ).

Here the first arrow is the canonical inclusion and the second one the dual of the
Alexander-Whitney quasi-isomorphism: AW : C∗(X×Y )

'→ C∗(X)⊗C∗(Y ). Since
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C∗(X), C∗(Y ) are complexes of modules and C∗(Y ) has finitely generated homology
in each degree, both maps in the composition (15) are quasi-isomorphisms; the
lemma follows. �

Remark 3.31. The map of E∞-algebra C∗(X) ⊗ C∗(Y ) → C∗(X × Y ) given by
Lemma 3.30 is in particular a map of chain complexes. From the last part of the
proof of Lemma 3.30, it follows that this map is equivalent in k-Mod∞ to the dual
of the Alexander-Whitney diagonal (see the maps (14), (15)), i.e. the map given
by Lemma 3.30 is an E∞-lifting of the Alexander-Whitney diagonal (also called the
cross product).

Let X• be a simplicial set and Y be a topological space. We define a map

ev : Y |X•| ×∆n → Y Xn

by ev(f, (t0, · · · , tn)) = g, where for

f :
(∐

(Xn ×∆n)/ ∼
)
→ Y and (t0, · · · , tn) ∈ ∆n,

we have,
g(σn) = f([σn, (t0, · · · , tn)]), for σn ∈ Xn.

Note that this is a well defined map of cosimplicial topological spaces. In fact,
ev is induced by the canonical map Xn →Map(∆n, |X•|) given by the unit of the
adjunction between simplicial sets and topological spaces.

Applying the E∞ cochain functor C∗(−) (Example 2.6) yields a natural map

(16) ev∗ :
(
C∗(Y Xi)

)
(i∈N)

→
(
C∗(Y |X•| ×∆i)

)
(i∈N)

of simplicial E∞-algebras.

Lemma 3.32. The geometric realization of the simplicial E∞-algebra
(
C∗(Z ×

∆i)
)

(i∈N)
is naturally equivalent to C∗(Z), as an E∞-algebra.

Proof. By Lemma 3.30, there is a natural equivalence C∗(Z×∆i) ∼= C∗(Z)⊗C∗(∆i)
in E∞-Alg. This induces an equivalence,

C∗(Z)⊗
(
C∗(∆i)

)
(i∈N)

'−→
(
C∗(Z)×∆i)

)
(i∈N)

of simplicial E∞-algebras. Since the constant map ∆i → pt is a homotopy equiva-
lence, the canonical map C∗(pt) → C∗(∆i), where C∗(pt) is viewed as a constant
simplicial E∞-algebra, is an equivalence. Composing the above with the equiva-
lence,

C∗(Z)⊗
(
C∗(pt)

)
(i∈N)

'−→ C∗(Z)⊗
(
C∗(∆i)

)
(i∈N)

gives rise to an equivalence between C∗(Z) and the constant simplicial E∞-algebra
C∗(Z ×∆i). �

Let X• be a simplicial set. Iterating Lemma 3.30, we get, for any n ∈ N, a
natural map of E∞-algebras

(17) CHXn(C∗(Y )) −→ C∗
(
Y Xn

)
Composing the map (17) with the ev∗ map in (16), we get a natural morphism of
simplicial E∞-algebras,

(18) It : CHsimp
X•

(C∗(Y )) −→ C∗
(
Y X•

) ev∗−→ C∗
(
Y |X•| ×∆•

)
.
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The following result is an integral, E∞-lifting of the iterated integrals [GTZ2].

Theorem 3.33. The geometric realization of the map

It : CHsimp
X•

(C∗(Y )) −→ C∗
(
Y |X•| ×∆•

)
yields a natural (in X• and Y ) morphism of E∞-algebras

It : CHX•(C
∗(Y )) −→ C∗

(
Y |X•|

)
.

Further, if |X•| is n-dimensional ( i.e. the highest degree of any non-degenerate
simplex is n) and Y is n-connected, then the map It is an equivalence.

Proof. Since the natural map (17), CHsimp
X•

(C∗(Y ))→ C∗
(
Y X•

)
, and the map (16),

C∗
(
Y X•

) ev∗→ C∗
(
Y |X•| ×∆•

)
, are simplicial, their realization yields a map of E∞-

algebras
CHX•(C

∗(Y ))→ |C∗
(
Y |X•| ×∆•

)
| ∼= C∗

(
Y |X•|

)
where the last equivalence follows from Lemma 3.32. This defines the map It which
is natural by construction.

Now, we assume |X•| is n-dimensional and Y is n-connected. We only need to
check that the underlying map of cochain complexes CHX•(C

∗(Y ))→ C∗
(
Y |X•|×

∆•
)

is an equivalence in the (∞, 1)-category of cochain complexes. The proof of
Lemma 3.30 (see Remark (3.31)) implies that the cochain complex morphism

CHX•(C
∗(Y )) −→ C∗(Y X•)

is the map induced by the iterated Alexander-Whitney diagonal. Since the geo-
metric realization commutes with the forgetful functor E∞-Alg → k-Mod∞, the
geometric realization of the map C∗(Y X•) → C∗

(
Y |X•| × ∆•

)
is equivalent in

k-Mod∞ to the map induced by the slant products

C`(Y Xn)→ C`
(
Y |X•| ×∆`

)
/[∆n]−→ C`−n

(
Y |X•|

)
by the fundamental chain [∆n] given by the unique non-degenerate n-simplex of
∆n.

Hence we have proved that It is equivalent in k-Mod∞ to the composition⊕
n≥0

CHXn(C∗(Y )) −→
⊕
n≥0

C∗(Y Xn)

⊕
ev∗−→
⊕
n≥0

C∗
(
Y |X•| ×∆n

) ⊕
n≥0 /[∆

n]
−→ C∗

(
Y |X•|

)
.

This last map is a quasi-isomorphism under the appropriate assumptions on X•
and Y using the same argument as in [GTZ, PT]. �

Remark 3.34 (Relationship with Chen integrals). Let Y = M be a manifold and
k a field of characteristic zero. Then, by Corollary (3.7) and homotopy invariance
of higher Hochschild cochains, there is a natural equivalence of E∞-algebras

CHX•(C
∗(M)) ∼= CHcdga

X•
(Ω(M)).

Recall that the slant product is a model for integration over ∆n. Unfolding the proof
of Theorem 3.33 and the construction of the map in Lemma 3.30, one can check
that the map It : CHX•(C

∗(M))→ C∗(M |X•|), given by Theorem 3.33, coincides15

15as natural transformations of ∞-functors sSet∞ → E∞-Alg
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with the generalized Chen’s iterated integral map defined in [GTZ, Section 2]. In
particular, when X• is the standard simplicial set model of the compact interval
or the circle, we recover the original Chen iterated integral construction [Ch]. This
justifies our notation It for the map defined in Theorem 3.33.

Similarly, the argument of the proofs of Theorem 3.33 and Lemma 3.30 as well as
Theorem 3.13 (applied to the forgetful functor from E∞-algebras to E1-algebras)

show that the iterated integral map It : CHX•(C
∗(Y )) → C∗

(
Y |X•|

)
given by

Theorem 3.33 is homotopy equivalent to the map of differential graded algebras
described in [PT]. In particular, for X = S1

• , we recover an E∞-algebra lift of
Jones quasi-isomorphism [Jo].

Similarly, if X is a topological space, by choosing a simplicial model X• for X
(that is a simplicial set with an equivalence |X•| → X), we get a natural equiva-

lence CHX(C∗(Y ))
'−→ CHX•(C

∗(Y )) and thus Theorem 3.33 yields the following
corollary. Note that an independent proof was obtained by Francis [F2] in the case
where X is a manifold.

Corollary 3.35. The map

It : CHX(C∗(Y ))
'−→ CHX•(C

∗(Y )) −→ C∗(Y X)

is a natural (in X, Y ) morphism of E∞-algebras and an equivalence if Y is dim(X)-
connected.

We will give a cohomological version of Theorem 3.33. Assume now that X is
pointed (by a map ε : pt→ X) and choose a pointed simplicial set model X• of X.
By naturality of the map It in Theorem 3.33, there is a commutative diagram of
E∞-algebras maps:

(19) CHX•(C
∗(Y ))

It // C∗
(
Y |X•|

)

C∗(Y ) ∼= CHpt(C
∗(Y ))

ε∗

OO

It // C∗
(
Y pt
) ∼= C∗(Y ).

C∗(ε∗)

OO

in which the lower map is seen to be the identity map by construction. It follows
that It is a C∗(Y )-E∞-module map. Denoting M∨ = Homk(M,k) the linear dual
of M (equipped with its canonical A-E∞-structure if M is an Aop-E∞-module), we
thus get a map

(20) It∗ : C∗

(
Y X
)
∼= C∗

(
Y |X•|

)
−→ Homk

((
C∗(Y |X•|)

)
, k
)

'−→ HomC∗(Y )

((
C∗(Y |X•|)

)
,
(
C∗(Y )

)∨)
−◦It−→ HomC∗(Y )

(
CHX•

(
C∗(Y )

)
,
(
C∗(Y )

)∨)
∼= CHX•

(
C∗(Y ),

(
C∗(Y )

)∨) ∼= CHX
(
C∗(Y ),

(
C∗(Y )

)∨)
where the first map is biduality morphism, the second map is the canonical isomor-
phism and the last two isomorphisms are from Definition 3.18.
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Corollary 3.36. The morphism It∗ : C∗

(
Y X
)
−→ CHX

(
C∗(Y ),

(
C∗(Y )

)∨)
in

k-Mod∞ is natural in X and Y .
Further, if Y is dim(X)-connected, X is compact and the homology groups of Y

are finitely generated in each degree, then It∗ is a quasi-isomorphism.

Proof. That It∗ is natural in X and Y is immediate since all maps involved in its
definition are natural in their two arguments.

The assumption Y is dim(X)-connected ensures that It is a quasi-isomorphism.
Further, for a model X = |X•| where Xk is finite in every degree, the above assump-
tion together with the assumption on the homology groups of Y ensures that the

biduality map C∗

(
Y |X•|

)
−→ Homk

((
C∗(Y |X•|)

)
, k
)

is a quasi-isomorphism as

well. Indeed, the connectivity assumption ensures that H∗

(
Y |X•|

)
is the abutment

of the (first quadrant hence) converging spectral sequence given by the simpli-
cial filtration of X• (and so is Homk

((
C∗(Y |X•|)

)
, k
)
). Its E1-term is given by

the (reduced) homology of
⊕

k C∗(Y
Xk). The finiteness of Xk ensures that each

C∗(Y
Xk)

'→
⊗

Xk
C∗(Y ) has finite type homology groups in every degree (since

Y has), hence is quasi-isomorphic to its bidual from which we deduce that the
biduality map is already an isomorphism at the E1-page. �

Remark 3.37 (Weakening the connectivity condition). The assumption of Y be-
ing dim(X)-connected in Theorem 3.33 and Corollary 3.36 is merely there to en-
sure the convergence of a spectral sequence (introduced in the proof of Corol-
lary 3.36, see [GTZ, PT] for more details), which boils down to the convergence of
an Eilenberg-Moore spectral sequence (as explained in [PT, BS]). When X• is a
finite simplicial set, the convergence is ensured under the weaker assumption that
Y is connected, nilpotent, with finite homotopy groups in degree less or equal to n
as is proved in [F2]. It follows that we have the following proposition.

Proposition 3.38. Assume X ∼= |X•| is compact and n-dimensional. Then, The-
orem 3.33 and Corollaries 3.35 and 3.36 hold true if Y is only connected, nilpotent,
with finite homotopy groups in degree less or equal to n.

4. Algebraic structure of higher Hochschild cochains

4.1. Wedge and cup products. Let A be an E∞-algebra and assume B is an
A-algebra, i.e., an E∞-algebra object in the symmetric monoidal (∞, 1)-category
A-ModE∞ of A-modules, see [L-HA, KM] for details.

Example 4.1. A map f : A→ B of E∞-algebras induces a natural E∞-A-algebra
structure on B.

Note further that, if B is a unital E∞-A-algebra, then the map a 7→ a · 1B lifts
to a map f : A→ B of E∞-algebras such that the induced E∞-A-algebra structure
on B is equivalent to the original one.

Since there is a canonical map mA : A⊗A→ A of E∞-algebras (Proposition 2.9),
any A-module inherits a canonical structure of A⊗A-module (Proposition 2.10).

Lemma 4.2. Let M ∈ A-ModE∞ be an A-module and X,Y be pointed topological
spaces. There is a natural equivalence

µ : HomA⊗A (CHX(A)⊗ CHY (A),M)
'−→ CHX∨Y (A,M)
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Proof. The excision property yields a natural equivalence

CHX∨Y (A) ∼= A
L
⊗
A⊗A

(
CHX(A)⊗ CHY (A)

)
It follows that we have an equivalence

HomA⊗A (CHX(A)⊗ CHY (A),M) ∼= HomA (CHX∨Y (A),M)

and the result now follows by Definition 3.16. �

Using the above Lemma 4.2, for pointed spaces X,Y and B an A-algebra, we
can define the following map

(21)

µ∨ : CHX(A,B)⊗ CHY (A,B) −→ HomA⊗A

(
CHX(A)⊗ CHY (A), B ⊗B

)
(mB)∗−→ HomA⊗A

(
CHX(A)⊗ CHY (A), B

)
∼= CHX∨Y (A,B)

where the first map is given by the tensor products (f, g) 7→ f ⊗ g of functions.

Definition 4.3. We call µ∨ : CHX(A,B) ⊗ CHY (A,B) → CHX∨Y (A,B) the
wedge product of Hochschild cochains (here we do not require that B is unital).

Note that this construction was already studied in some particular cases in our
previous papers [G1, GTZ].

Example 4.4 (Small model for CDGA’s). IfA,B are actually CDGA’s and given fi-
nite pointed set modelsX•, Y• ofX,Y , the map µ∨ can be combinatorially described
as follows. We have two cosimplicial chain complexes CHX•(A,B)⊗ CHY•(A,B)
(with the diagonal cosimplicial structure) and CHX•∨Y•(A,B). There is a cosim-
plicial map µ̃ : CHX•(A,B) ⊗ CHY•(A,B) → CHX•∨Y•(A,B) given, for any
f ∈ CHXn(A,B) ∼= HomA(A⊗#Xn , B), g ∈ CHXn(A,B) ∼= HomA(A⊗#Yn , B))
by

µ(f, g)(a0, a2, . . . a#Xn , b2, . . . , b#Yn) = ±a0.f(1, a2, . . . a#Xn).g(1, b2, . . . , b#Yn)

where a0 corresponds to the element indexed by the base point of Xn∨Yn (the sign
is given by the usual Koszul-Quillen sign convention). Composing the map µ̃ with
the dual of the Eilenberg-Zilber quasi-isomorphism realizes the wedge map (21):

µ∨ : CHX(A,B)⊗ CHY (A,B)→ CHX∨Y (A,B).

Proposition 4.5. The map µ∨ is associative, i.e., there is a commutative diagram

CHX(A,B)⊗ CHY (A,B)⊗ CHZ(A,B)
µ∨⊗id //

id⊗µ∨
��

CHX∨Y (A,B)⊗ CHZ(A,B)

µ∨

��
CHX(A,B)⊗ CHY ∨Z(A,B)

µ∨ // CHX∨Y ∨Z(A,B)

in k-Mod∞.

Proof. It follows from the associativity of the wedge product of spaces and tensor
products of E∞-algebras as used in Lemma 4.2 and Proposition 2.9. �
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Let X be a homotopy coassociative co-H-space, i.e., a topological space X en-
dowed with a continuous map δX : X → X ∨X which is co-associative (up to ho-
motopy). Note that all suspension spaces has this structure, even though they are
rarely manifolds. Then, by functoriality, we get a morphism δ∗X : CHX∨X(A,B)→
CHX(A,B).

Corollary 4.6. Assume X is a homotopy coassociative co-H-space. The composi-
tion

∪X : CHX(A,B)⊗ CHX(A,B)
µ∨−→ CHX∨X(A,B)

δ∗X−→ CHX(A,B),

called the cup-product, induces a structure of graded associative algebra on the
cohomology groups HHX(A,B). It is further unital if B is unital and X counital.

Proof. The associativity follows from Proposition 4.5 and Proposition 3.22. When
B has an unit 1B and X is counital, then it follows from the contravariance of
Hochschild cochains with respect to maps of pointed spaces that the unit of ∪X is
given by the canonical map

(22) k
1B−→ B ∼= CHpt(A,B)

(X→pt)∗−→ CHX(A,B).

Indeed, the two compositions
(
id ∨ (X → pt)

)
◦ δX and

(
(X → pt) ∨ id

)
◦ δX are

homotopical to the identity. Further, the composition

CHX(A,B)⊗ k id⊗1B→ CHX(A,B)⊗ CHpt(A,B)
µ∨→ CHX(A,B)

is the identity map of CHX(A,B) (which can be checked on any simplicial set
model of X). �

In particular, the pinching map Sd → Sd∨Sd obtained by collapsing the equator

to a point induces a cup product ∪Sd : CHSd(A,B)⊗CHSd(A,B)→ CHSd(A,B)
for Hochschild cohomology over spheres for any E∞-algebra A and A-algebra B.
For CDGA’s, this cup-product agrees by definition and Remark 3.24 with the one
introduced by the first author in [G1].

Example 4.7 (Cup-product on the standard simplicial model for spheres).
In the case of spheres and CDGA’s, there is an explicit description of the cup
product if one uses the standard model of the dimension d sphere. Recall that the
standard simplicial set model of the circle S1 is the simplicial set, denoted (S1

st)•,
generated by a unique non-degenerate simplex of dimension 1. Thus (S1

st)n := n+

where n+ = {0, · · · , n} has {0} for its base point see [G1, GTZ, P]. The standard
simplicial set (Sdst)• is the iterated smash product (Sdst)• = (S1

st)• ∧ · · · ∧ (S1
st)•

so that (Sdst)n = (nd)+. Using this standard simplicial set model, we have an
equivalence

CHSd(A,M) ∼= CH(Sdst)•(A,M) ∼= Homk

(
A⊗(•)d ,M

)
see [G1] (in particular, for the description of the differential on the right hand side).
Note that we do not know any simplicial map (Sdst)• → (Sdst)•∨(Sdst)• modeling the
pinching map. However, there is a simplicial map q : sd2((Sdst)•)→ (Sdst)• ∨ (Sdst)•
modeling it. Here sd2((Sdst)•) is the edgewise subdivision [McC] (also see [GTZ,
§ 3.3.2] for examples of applications in the context of higher Hochschild complexes)
of (Sdst)•; it can be seen as the simplicial model of the circle obtained by gluing two
intervals at their endpoints. In other words sd2((Sdst)n := (2n+1)+ = {0, . . . , 2n+1}
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pointed in 0. The map q : sd2((Sdst)n)→ (Sdst)n ∨ (Sdst)n
∼= {1, . . . , n} ∪ {0} ∪ {n+

2, . . . 2n+1} identifies n+1 with 0. The cup-product is thus realized by the induced
map (

CH(Sdst)•(A,B)
)⊗2 µ∨−→ CH(Sdst)•∨(Sdst)•(A,B)

q∗−→ CHsd2((Sdst)•)(A,B).

There is also a cochain complex map (not induced by a map simplicial sets) mak-

ing CH(Sdst)•(A,B) a differential graded associative algebra on the nose described

in [G1]. Let f ∈ C(Sdst)p(A,B) ∼= Homk(A⊗
(
pd
)
, B) and g ∈ C(Sdst)q (A,B) ∼=

Homk(A⊗
(
qd
)
, B). Define f ∪0 g ∈ C(Sdst)p+q (A,B) ∼= Homk

(
A⊗
(

(p+q)d
)
, B
)

by

(23) f ∪0 g
(

(ai1,...,id)1≤i1,...,id≤p+q

)
= f((ai1,...,id)1≤i1,...,id≤p

)
g((ai1,...,id)p+1≤i1,...,id≤p+q

)∏
aj1,...,jd

where the last product is over all indices which are not in the argument of f or g.
Note that for d = 1, this is the formula of the usual cup-product for Hochschild
cochains as in [Ge] and for n = 2, this is the Riemann sphere product as defined
in [GTZ].

The following lemma is proved using a straightforward computation

Lemma 4.8. Let A be a CDGA and B a commutative differential graded A-algebra.

Then
(
CH(Sdst)•(A,B), d,∪0

)
(where d is the total differential as in [G1, GTZ]) is

an associative differential graded algebra (and unital if B is unital).

The above explicit formula for the cup-product realizes the cup-product induced
by the co-H space structures of the spheres.

Proposition 4.9. The natural equivalence CHSdst•(A,B) ∼= CHSd(A,B) is an
equivalence of E1-algebras (with E1-structures induced by Lemma 4.8 and Corol-
lary 4.6).

Proof. The proof in the case d = 2 is given in the proof of [GTZ, Proposition
3.3.17]. The argument for general d is the same. �

We finish this section by giving a more structured version of the wedge product.
The wedge product (21) is the degree 0-component of a higher homotopical tower
of wedge products. Since B is an E∞-algebra, it is in particular, by restriction of
structure, an En-algebra for any positive integer n.

Assume, that A and B are algebras over the (chains on the) linear isometry
operad ([KM]) viewed as algebras over C∗(Cn), the (chains on the) little dimension
n-cubes operad. For any c ∈ C∗(Cn(r)), we have a map mB(c) : B⊗r −→ B.
Similarly to the wedge product, we can thus define the composition

(24) µ∨(c) :

r⊗
i=1

CHXi(A,B) −→ HomA⊗r

( r⊗
i=1

CHXi(A), B⊗r
)

(mB(c))∗−→ HomA⊗r

( r⊗
i=1

CHXi(A), B
)
∼= CH

∨r
i=1Xi(A,B).

where the first map is given by the tensor products of morphisms.
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Remark 4.10. When B is a CDGA, then all operations µ∨(c) vanishes if c is not
of degree 0.

Example 4.11 (Strict chain model for algebras over an E∞ Hopf-operad). The
map µ∨(c) can be defined similarly at the chain level whenever A, B are algebras
over an E∞-operad (E(n))n which is further an Hopf-operad, that is, is equiped
with a diagonal of operads E(n)→ E(n)⊗ E(n)). In that case one gets map µ∨(c)
for any c ∈ E(n). A nice model of such an E∞ Hopf operad is the Barratt-Eccles
operad [BF].

4.2. A natural Ed-algebra structure on Hochschild cochains modeled on
d-dimensional spheres. We have already seen the definition of the cup product
for Hochschild cochains modeled on spheres for E∞-algebras, see Corollary 4.6. We

now turn to the full Ed-structure on CHSd(A,B). In [G1], the first author proved
that if A is a CDGA and B is a commutative A-algebra (for example B = A),
there is a natural En-algebra structure on CHSn(A,B). In this section, we recall
this construction in the context of∞-categories of E∞-algebras. We will relate this
construction to centralizers in the sense of Lurie [L-HA, Lu3] in Section 6.

Recall that we denote Cd the usual d-dimensional little cubes operad (as an op-
erad of topological spaces) whose associated∞-operad is a model for E⊗d , see[L-HA,

Lu3]. Cd(r) is the configuration space of r many d-dimensional open cubes in Id.
Any element c ∈ Cd(r) defines a map pinchc : Sd →

∨
i=1...r S

d by collapsing the
complement of the interiors of the r cubes to the base point. The maps pinchc
assemble together to give a continuous map

(25) pinch : Cd(r)× Sd −→
∨

i=1...r

Sd.

Note that the map pinch preserves the base point of Sd, hence passes to the pointed
category.

For any topological spaceX, the singular set functorX 7→ ∆•(X) := Map(∆•, X)
defines a (fibrant) simplicial set model of X. Hence, applying the singular set
functor to the above map pinch, the contravariance16 of Hochschild cochains (see
Proposition 3.9 and Proposition 3.22) and the wedge product (24) µ∨, we get, for
all r ≥ 1, a morphism

(26) pinch∗Sd,r : C∗
(
Cd(r)

)
⊗
(
CHSd(A,B)

)⊗r
diag⊗id−→ C∗

(
Cd(r)

)⊗2 ⊗
(
CHSd(A,B)

)⊗k
µ∨(diag(2))∗−→ C∗

(
Cd(r)

)
⊗ CH

∨r
i=1 S

d(
A,B

)
pinch∗−→ CHSd(A,B)

in k-Mod∞. Here diag : C∗
(
Cd(r)

)
→ C∗

((
Cd(r)

)2) AW→
(
C∗
(
Cd(r)

)⊗2

is the

diagonal and diag(1), diag(2) its components.

Theorem 4.12. Let A be an E∞-algebra and B an E∞-A-algebra (not necesssarily

unital). The collection of maps (pinchSd,k)k≥1 makes CHSd(A,B) an Ed-algebra

16with respect to maps of topological spaces
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(naturally in A, B), which is unital if B is unital. Further, the underlying E1-

structure of CHSd(A,B) agrees with the one given by Corollary 4.6.

Note that the last map C∗
(
Cd(r)

)
⊗CH

∨r
i=1 S

d(
A,B

) pinch∗−→ CHSd(A,B) in the
definition of the composition (26) is just the map dual to the one associated to

p̃inch : Cd(r) −→MapE∞-Alg(CHSd(A), CH∨r
i=1 S

d(A))
)

in Remark 3.10 (see formula (9)).

Proof. To prove the first statement we need to prove that the morphisms pinch∗Sd,r
are compatible with the operadic composition in C∗

(
Cd(r)

)
, the singular chains on

the little d-dimensional cubes. Since the diagonal diag : C∗
(
Cd(r)→

(
C∗
(
Cd(r)

)⊗2

is a map of ∞-operads, by Proposition 4.5 and Proposition 3.11 (as in Exam-
ple 3.12), the statement reduces to the commutativity of the following diagram for
every j ∈ {1, . . . , k}

Cd(k)× Cd(`)× Sd
pinch //

◦j×idSd
��

Cd(`)×
∨
i=1...k S

d

id∨
i=1...j−1 S

d×pinch×id∨
i=j+1...k S

d

��
Cd(k + `)× Sd

pinch // ∨
i=1...k+` S

d.

In other words, it reduces to the fact that the pointed sphere Sd is a Cd-coalgebra
in the category of pointed topological spaces endowed with the monoidal structure
given by the wedge product.

The underlying E1-structure is given by any element in Cd(2) generating the
homology group H0(Cd(2),Z) ∼= Z. We can, for instance, take the configuration of
the two open cubes (−1, 0)d and (0, 1)d in (−1, 1)d. It follows immediately with
this choice, that the associated E1-structure is given by the cup-product ∪Sd of
Corollary 4.6 up to equivalences of E1-algebras. The unit is given by the map (22)
as in Corollary 4.6.

�

This theorem will be generalized in Theorem 7.10 below to also include general-
ized sphere topology operations. The naturality in A and B means that if C is a
B-E∞-algebra map, then, there is an Ed-algebra homomorphism

CHSd(A,B)⊗ CHSd(B,C) −→ CHSd(A,C)

see Proposition 6.15 and Theorem 6.8.

Remark 4.13. For d > 1, Theorem 4.12 implies that the cup-product makes the

Hochschild cohomology groups HHSd(A,B) a graded commutative algebra (and
not only associative as in the case d = 1).

Further, when B = A (endowed with its canonical A-algebra structure), the Ed-
structure can actually be lifted naturally to an Ed+1-structure; see Theorem 6.28.(3).

Remark 4.14. Similarly to Example 4.7, it is possible (but a bit tedious) to give
explicit description of the higher ∪i-products on the standard models of the spheres.
Details are left to the interested reader.
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The core of the proof of Theorem 4.12 is the Ed-co-H-space structure of the
sphere. We say that a pointed topological space X is an Ed-co-H-space if it is an
Ed-coalgebra in the category of pointed spaces with monoidal structure given by
the wedge product.

In other words, there are continuous maps Cd(k) × X →
∨
i=1...kX which are

compatible with the operadic composition in Cd. Mimicking the proof of Theo-
rem 4.12 gives the following enhancement of Corollary 4.6:

Corollary 4.15. Let X be an Ed-co-H-space, A an E∞-algebra and B an E∞-
A-algebra. Then there is a natural (in X in Ed-co-H-space, A and B) Ed-algebra
structure on CHX(A,B) refining the cup-product of Corollary 4.6

Example 4.16 (Smooth CDGA). In characteristic zero, there is an equivalence
En-Alg ∼= H∗(Cn)-Alg between the ∞-categories of En-algebras and (homotopy)
H∗(Cn)-algebras induced by any choice of formality of the little n-disks-operad.
Note that for n = 1 the latter operad H∗(C1) is the operad of associative algebras
while for n ≥ 2, H∗(Cn) is the operad governing Pn-algebras.

The next proposition shows that for free graded commutative algebras, the ho-
motopy Pn-structure given by Theorem 4.12 is trivial.

Here a Pn-algebra stands for a differential graded commutative unital algebra
(B, d, ·) equipped with a (homological) degree n−1 bracket which makes the iterated
suspension A[1− n] a differential graded Lie algebra. The bracket and product are
further required to satisfy the graded Leibniz identity, see paragraph 6.5.1 below.

If P is a Pn-algebra and C a Pn-coalgebra, we can form the convolution Pn-
algebra Hom(C,P ) (as in [Ta2]).

Proposition 4.17. Let A = (Sym(V ), d) and B = (Sym(W ), b) be differential free
graded commutative algebras and assume n ≥ 2.

• There is an natural quasi-isomorphism

CHSn(A)
'−→ (Sym(V ⊗H•(Sn)), ∂) ∼= (Sym(V ⊕ V [−n], ∂)

of CDGA. Here the right hand side is equipped with the unique differential
such that for any v ∈ V , ∂(v) = d(v) and ∂v[−n] = (−1)nsn(d(v)) where
sn is the unique derivation satisfying sn(w) = w[−n], sn(w[−n]) = 0 for
w ∈ V .
• There is an natural equivalence of (homotopy) Pn-algebras

CHSn(A,B) ∼= HomSym(V )

(
Sym(V ⊗H•(Sn)),Sym(W )

)
where the right hand side is endowed with the convolution Pn-algebra struc-
ture17 given by the linear isomorphism

HomSym(V )

(
Sym(V ⊗H•(Sn)),Sym(W )

)
∼= Hom(Sym(V [−n]),Sym(W )

)
.

where Sym(V [−n]) is the cofree coproartinian graded cocommutative coal-
gebra seen as a Pn-coalgebra with trivial bracket.

Proof. The first claim is (a special case of) the Hochschild-Kostant-Rosenberg The-
orem for higher Hoschild homology proved in [P] and Remark 3.3. Note that the
quasi-isomorphism is obtained by the degeneration of a spectral sequence which is

17which has a zero bracket
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natural in both A and maps of topological spaces [P, §2]. In fact, in our case we can

use Proposition 3.9: one has natural equivalences CHSn(A) ∼= C∗(S
n)

L
⊗
E⊗∞

A and

(Sym(V ⊗H•(Sn)), ∂) ∼= H∗(S
n)

L
⊗
E⊗∞

A.

The equivalence is then induced by the fact that Sn is formal (this is essentially
the approach in [P]); alternatively, one can use Corollary 3.15 if V is negatively
graded.

The first claim thus also implies that

CHSn(A,B) ∼= HomSym(V )

(
Sym(V ⊗H∗(Sn)),Sym(W )

)
as cochain complexes and that this equivalence is an equivalence of (homotopy) Pn-
algebras, where the Pn-structures are given as algebras over the operad

(
H∗(Cn(r))

)
.

The right hand side is equipped with a
(
H∗(Cn(r))

)
-algebra structure given by the

action of
(
H∗(Cn(r))

)
on H∗(S

n) and thus on H∗(S
n)

L
⊗
E⊗∞

A; this action being similar

to the one on CHSn(A) ∼= C∗(S
n)

L
⊗
E⊗∞

A given by Theorem 4.12. Namely it is given

by the composition:

(27) pinch∗Sd,r : H∗
(
Cn(r))

)
⊗
(
HomSym(V )

(
Sym(V ⊗H∗(Sn)),Sym(W )

))⊗r
µB−→ H∗

(
Cn(r))

)
⊗HomSym(V )

(
Sym

(
V ⊗H∗

( r∨
i=1

Sn
))
,Sym(W )

)
pinch∗−→ HomSym(V )

(
Sym(V ⊗H∗(Sn)),Sym(W )

)
.

Here µB stands for the multiplication in B = Sym(W ). For degree reason, this
H∗
(
Cn(r))

)
-algebra structure is the one of a CDGA endowed with zero bracket. In

particular it corresponds to the convolution Pn-algebra mentioned in the Proposi-
tion. �

5. Factorization homology and En-modules

In this section, for n = {1, 2, . . . , } ∪ {+∞}, we collect some results on the
category of En-modules over an En-algebra A. In particular we identify it with the
category of left modules over the factorization homology

∫
Sn−1 A in § 5.2. Then

we apply this to E∞-modules to show the existence and uniqueness of the lift of
Poincaré duality in the category of E∞-modules in § 5.4. These results are latter
used in § 6 and § 7.

We first start by presenting a Factorization algebra point of view on En-modules.

5.1. Stratified factorization algebras and En-modules. One can define a no-
tion of locally constant factorization algebra for stratified manifolds as well as fac-
torization homology for such spaces. We refer to [AFT] and [G2] for details.

In this paper, we will essentially only need very special and easy cases: the disk
and the sphere with a marked point.

Let X be a Hausdorff paracompact topological space. By a stratification of X,
we mean an union of a sequence of closed subspaces ∅ = X−1 ⊂ X0 ⊂ X1 ⊂
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· · · ⊂ Xn = X such that, for any point xi ∈ Xi, there is a neighborhood Uxi and

a filtration preserving homeomorphism Uxi
φ
' Ri × C(L) in X where C(L) is the

(open) cone on a stratified space of dimension n− i− 1.
Note that Xi+1 \ Xi is not necessarily connected nor non-empty. In all the

examples considered in this paper, it will nevertheless be a smooth manifold of
dimension i + 1. We call the connected components of Xi \ Xi−1 the strata of
dimension i of X.

We define the index of an open subset U ⊂ X to be the smallest integer j such
that U ∩Xj 6= ∅.

Definition 5.1. An an open subset U of X is called a (stratified) disk if there is a
filtration preserving homeomorphism U ∼= Ri×C(L) with L stratified of dimension
n− i− 1, and i is the index of U .

A factorization algebra F over a stratified manifold ∅ ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn =
X is called locally constant if the following condition is satisfied:

if U ↪→ V is an inclusion of (stratified) disks of same index 18 and further V
intersects only one stratum of Xi \Xi−1 where i is the index of V , then we require
that the structure map F(U)→ F(V ) is a quasi-isomorphism.

We will also say that F is stratified locally constant when we want to insist on
the stratification.

Example 5.2 (Pointed disk). We write Dn
∗ for the pointed Euclidean open disk

viewed as a stratified manifold. It has only two strata: a dimension 0 stratum given
by its center and the dimension n-stratum given by the complement of the center.
In other words Dn

0 = {0} = Dn
1 · · · = Dn

n−1 and Dn
n = Rn.

Thus a factorization algebra (or an N(Disk(Dn)-algebra) on Dn
∗ is locally con-

stant if the structure map F(U) → F(V ) is an equivalence when U ⊂ V are open
disks such that either U contains the base point or V is included in the n-stratum
Dn − {0}. In other words, we do not require F(U) → F(V ) to be an equivalence
if V contains the base point while U does not.

We let FaclcDn∗ be ((∞, 1))-category of stratified locally constant factorization

algebras on the pointed disk.

Definition 5.3. • We denote Faclc,resDn∗
, the (∞, 1)-category

Faclc,resDn∗
:= FaclcDn∗ ×FaclcRn\{0}

FaclcRn

of pairs (M,A) of locally constant factorization algebras on respectively Dn
∗

and Dn together with an equivalence of factorization algebrasM|Dn−{0}
'→

A|Dn−{0} between the restrictions of M and A to Dn − {0}.
• Fix B ∈ FaclcDn . We denote FaclcDn∗ |B

the (∞, 1)-category

FaclcDn∗ |B := FaclcDn∗ ×FaclcRn\{0}
{B},

that is the (∞, 1)-category of pairs (M,A) as above such thatA is (equipped
with an equivalence with) B.

18that is, for all j = 0, . . . , n− 1, either V ∩Xj = ∅ or both U ∩Xj and V ∩Xj are non empty
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Remark 5.4. Given an object (M,A) ∈ Faclc,resDn∗
, the factorization algebra A

is essentially determined by M, since, by the locally constant condition, it is es-
sentially defined by its restriction to any open ball in Dn, thus to any open ball
included in Dn − {0}.

The same is locally true for any object N of FaclcDn∗ . Indeed, restricting to any

disk D of Dn − {0} yields a locally constant factorization algebra on the disk and
thus an En-algebra AD ∼= N (D). For any two disks D1, D2, the En-algebra AD1

and AD2
are equivalent, but such an equivalence depends on a choice of a bigger disk

containing both of them. Thus, the main difference between Faclc,resDn∗
and FaclcDn∗

is that we assume that these equivalences can be made canonically, which amout to
the fact that N|D\{0} is equivalent ot the restriction of a fixed factorization algebra
on Rn.

Example 5.5. For n = 1, the category Faclc,resD1
∗

is equivalent to the category of

all bimodules over an E1-algebra. However, FaclcD1
∗

is equivalent to the category

of all bimodules, that is the category whose objects are (A,B)-bimodules for some
E1-algebras A,B which may be non-equivalent.

Theorem 2.29 has an analogue for modules:

Proposition 5.6 ([G2]). • There is an equivalence between the (∞, 1)-categories

ModEn of all En-modules (§ 2.2) and Faclc,resDn∗
, the locally constant factor-

ization algebras on the pointed disk as in Definition 5.3.
• Let A be an En-algebra corresponding to a factorization algebra A ∈ FaclcRn

under Theorem 2.29. Then the above equivalence restricts to an equivalence

A-ModEn ∼= FaclcDn∗ |A.

Note that the pushforward Dn
∗ → pt realizes the forgetful functor ModEn(C)→ C

of § 2.2. Further, as noted in Remark 5.4, fixing any Euclidean sub-disk D ⊂
Dn
∗ − {0} we get a functor Faclc,resDn∗

→ FaclcD which is equivalent to the functor

ι : ModEn → En-Alg, i.e., to the forgetful functor (M,A) 7→ A.

Forgetting the stratification yields a canonical functor FaclcDn → Faclc,resDn∗
re-

alizing the canonical functor En-Alg → ModEn (which views an En-algebra as a
module over itself in a canonical way).

Remark 5.7 (Induced En-module structure associated to an En-algebra map). Let
A be an En-algebra and f : A→ B an En-algebra map and let B be endowed with
the induced A-En-module structure. This module structure has an easy description
in terms of factorization algebras. Denote A : U 7→

∫
U
A and B : V 7→

∫
V
B be

the associated factorization algebras on Rn (see Theorem 2.20). By Proposition 5.6
and Proposition 2.25, the data of the A-En-module structure on B is equivalent to
the data of a parametrized factorization algebra. Thus, to any embedding

∐r
i=0 φi :∐r

i=0 Rn → Rn (with φ0(0) = 0) and commutative diagram∐r
i=0 Rn

h //

∐r
i=0 φi $$

Rn

ψ~~
Rn
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of embeddings, one can associate a natural19 map

(28) A(φ1(Rn))⊗ · · · ⊗ A(φr(Rn))⊗ B(φ0(Rn)) −→ B(ψ(Rn)).

This map (28) is very simple to describe, it is the composition∫
φ1(Rn)

A⊗ · · · ⊗
∫
φr(Rn)

A⊗
∫
φ0(Rn)

B(⊗r
i=1

∫
φi(Rn)

f
)
⊗id

−→
∫
φ1(Rn)

B ⊗ · · · ⊗
∫
φr(Rn)

B ⊗
∫
φ0(Rn)

B

−→
∫
ψ(Rn)

B ∼= B(ψ(Rn)).

where the last map is given by the factorization algebra structure of B, i.e., the
En-algebra structure of B.

Now, let g : B → C be another En-algebra map endowing C with an A-En-
module structure; let C : U 7→

∫
U
C be the associated factorization algebra. Then a

map A-En-modules h : B → C is equivalent to the data of a stratified parametrized
factorization algebra map

∫
U
h : B(U) ∼=

∫
U
B →

∫
U
C ∼= C(U) such that, for all

φ0, . . . , φr and ψ as above, the following diagram

(⊗r
i=1

∫
φi(Rn)

A
)
⊗
∫
φ0(Rn)

B(⊗
id
)
⊗
∫
φ0(Rn)

h

��

(
⊗∫

φi(Rn)
f
)
⊗id
//⊗r

i=0

∫
φi(Rn)

B //
∫
ψ(Rn)

B

∫
ψ(Rn)

h

��(⊗r
i=1

∫
φi(Rn)

A
)
⊗
∫
φ0(Rn)

C
(
⊗∫

φi(Rn)
g◦f
)
⊗id
//⊗r

i=0

∫
φi(Rn)

C //
∫
ψ(Rn)

C

is commutative.

5.2. Universal enveloping algebra of an En-algebra. In this section, we will
recall some general results that are needed, among other places, in the proof of
Proposition 6.2. We start with the following very useful result describing the uni-
versal enveloping algebra of an En-algebra in terms of factorization homology. Note
that universal enveloping algebras of En-algebras are given by the left adjoint of
the forgetful functor En-Alg→ k-Mod∞ (for instance see [F1]).

Proposition 5.8 (Francis, Lurie). Let A be an En-algebra (n ∈ N). The category
A-ModEn is equivalent as a symmetric monoidal (∞, 1)-category to the category of
left modules over the factorization homology

∫
Sn−1(A), with respect to the canonical

outward n-framing on Sn−1 ⊂ Rn.

Proof. This is proved in [F1] and can also be found in [Lu3, L-HA]. Note that by
the∞-version of the Barr-Beck theorem [Lu1, L-HA] for any En-algebra A, there is

an En-enveloping algebra U
(n)
A ∈ E1-Alg with a natural equivalence U

(n)
A -LMod ∼=

A-ModEn , see loc. cit and also [Fre]. Now the result follows from the natural

equivalence U
(n)
A

'→
∫
Sn−1 A see [F1, Proposition 3.19]. �

19with respect to composition of embeddings, that is satisfies the usual associativity condition
of the structure maps of a prefactorization algebra in the sense of [CG]
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This Lemma extends to the case n =∞, see Lemma 5.15 and more importantly
Theorem 5.13 below.

Remark 5.9. In terms of factorization algebra, the equivalence in Proposition 5.8
can be thought of as the pushforward of factorization algebras. A Euclidean norm
of a vector defines a canonical map N : Dn

∗ → [0, 1)∗, where [0, 1)∗ is the half open
interval with a unique closed stratum given by the point 0. The (∞, 1)-category of
locally constant factorization algebra on the stratified manifold [0, 1)∗ is equivalent
to the (∞, 1)-category LMod. The equivalence of Proposition 5.8 is then just
induced by the pushforward N∗ : FaclcDn∗ → Faclc[0,1)∗

by N . See [G2] for details.

We will later need the following lemma, which expresses the compatibility of
the equivalence of categories given by Proposition 5.8 with the inclusions of En+1-
algebras inside En-algebras. We feel this lemma is of independent interest anyhow.
Suppose X is a codimension 1 submanifold of an n-framed manifold and Y endowed
with a trivialization ψ : X × R ↪→ Y of a tubular neighborhood in Y . Then, for
any En-algebra A, there is a canonical map ψ :

∫
X
A →

∫
Y
A (which depends on

the trivialization).

Lemma 5.10. Let A be an En+1-algebra and φn : Sn−1 × R ↪→ Sn the inclusion
of an open (tubular) neighborhood of the equatorial sphere Sn−1 = Sn ∩

(
Rn ×

{0}
)

inside Sn. The following diagram, in which the vertical arrows are given by
Proposition 5.8, is commutative,

A-ModEn+1 //

'
��

A-ModEn

'
��

(
∫
Sn
A)-LMod

φ∗n // (
∫
Sn−1 A)-LMod

.

Proof. The universal property of the En-enveloping algebra U
(n)
A implies that the

map of ∞-operad E⊗n → E⊗n+1 (see § 2.2) yields a canonical map of E1-algebras

U
(n)
A → U

(n+1)
A . It remains to identify the composition θn :

∫
Sn−1 A ∼= U

(n)
A →

U
(n+1)
A

∼=
∫
Sn
A with φn to prove the lemma. From the proof of [F1, Proposition

3.19], we know that U
(n)
A is computed by the colimit of a (simplicial) diagram,

(29)
∐

K∈Fin
E⊗n
(
K
∐
{pt}

)
⊗A⊗K ⇔

∐
E⊗n (J,I)

E⊗n
(
I
∐
{pt}

)
⊗A⊗J · · · .

Similarly,
∫
Sn−1 A can be computed as the colimit of a similar diagram,

(30)∐
K∈Fin

Embfr
(∐
K

Dn, Sn−1×R
)
⊗A⊗K ⇔

∐
E⊗n (J,I)

Embfr
(∐

I

Dn, Sn−1×R
)
⊗A⊗J · · · ,

where Embfr denotes the space of framed embeddings.

Furthermore, the equivalence U
(n)
A

'→
∫
Sn−1 A is induced by the canonical maps

E⊗n
(
K
∐
{pt}

)
→ Embfr

(∐
K D

n, Sn−1 × R
)

obtained by translating the disk

labeled by the distinguished point to the origin; see the proof of [F1, Proposition
3.19].
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The natural map U
(n)
A → U

(n+1)
A is induced by the natural maps E⊗n

(
K
∐
{pt}

)
→

E⊗n+1

(
K
∐
{pt}

)
in diagram (29). Since the natural map of∞-operads E⊗n → E⊗n+1

is given by sending n-dimensional disks D to D×R, we get commutative diagrams

E⊗n
(
K
∐
{pt}

)
//

��

E⊗n+1

(
K
∐
{pt}

)
��

Embfr
(∐

K D
n, Sn−1 × R

)
// Embfr

(∐
K D

n+1, Sn × R
)

where the lower map is induced by the embedding

φn × R : (Sn−1 × R)× R ↪→ Sn × R

prescribed in the assumptions of the lemma. It follows that θn :
∫
Sn−1 A ∼= U

(n)
A →

U
(n+1)
A

∼=
∫
Sn
A is obtained by taking the colimit of these lower maps

Embfr
(∐
K

Dn, Sn−1 × R
)
φn×R−→ Embfr

(∐
K

Dn+1, Sn × R
)

applied to diagram (30), which, by definition, is the map φn :
∫
Sn−1 A→

∫
Sn
A. �

Remark 5.11 (The trivial En-A-module structure on A). It follows from the
axioms of factorization homology (see [Lu3, L-HA, F1] or [GTZ2, Section 6]) that
for any En-algebra A, there is a natural equivalence A ∼=

∫
Dn

A in k−Mod∞. Note

that Dn has an immediate trivialization Sn−1 ×D1 ∼= Dn \{0} of a complement of
a point (and in fact of any complement of a closed disk). Hence, there is a natural
left (

∫
Sn−1 A)-module structure on

∫
Dn

A see [Lu3, L-HA], [F1, Section 3] or [GTZ2,

Section 6.3] for details. Note that this left
( ∫

Sn−1 A
)
-module structure is given by

a map ∫
Sn−1

A⊗
∫
Dn

A ∼=
∫(
Sn−1×D1

)∐
Dn

A −→
∫
Dn

A

induced by any embedding
(
Sn−1 ×D1

)∐
Dn ↪→ Dn mapping Dn onto a subdisk

D(0, r) ⊂ Dn (for some radius r > 0) and Sn−1 ×D1 onto a sub-annulus included
in Dn \D(0, r).

By Proposition 5.8, we get a natural A-En-module structure on A which relates
to the canonical A-En-module structure of A as follows.

Lemma 5.12. The natural equivalence A ∼=
∫
Dn

A is an equivalence of A-En-
modules.

Proof. Consider a framed embedding of Dn ↪→ Rn. Since Dn \ {0} is framed, the
result follows from [F1, Remark 3.26]. In fact, the proof of [F1, Proposition 3.19]
applied to A and not the unit object of C = k-Mod∞ gives an equivalence of left∫
Sn−1 A-modules between A viewed as an (

∫
Sn−1 A)-module and

∫
Dn

A. �

5.3. Application of higher Hochschild chains to prove Theorem 5.13. For
E∞-algebras, Proposition 5.8 has a simpler and well-known (see [L-HA, KM, Fre])
form, see Theorem 5.13 below. In this section, we recall this result and then give an
independent proof using the formalism of factorization homology/higher Hochschild
chains.
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The following theorem is due to Lurie [L-HA, Proposition 4.4.1.4], [Lu2] and also
appeared independently in the work of Fresse [Fre].

Theorem 5.13. Let A be an E∞-algebra. There is an equivalence of symmetric
monoidal ∞-categories between the category A-ModE∞ of E∞ A-Modules and the
category of left A-modules (where A is viewed as an E1-algebra). In particular:

• Any left A-module can be promoted into an E∞-A-module (up to quasi-
isomorphisms)
• Any map f : M → N of left A-modules can be lifted to a map of E∞-

modules (up to a contractible family of choices)

The theorem allows us to reduce the study of E∞-modules on C∗(X) to the
study of left modules on the (differential graded) associative algebra (C∗(X),∪),
for instance see § 5.4. Also, see Example 5.18 and Remark 5.19 for a more explicit
description of the lifts of left modules into E∞-ones.

Remark 5.14. When A is an E∞-algebra the categories of left and right mod-
ules over A (viewed as an E1-algebra) are equivalent. Hence, one can replace left
modules by right modules in Theorem 5.13.

The rest of this section is devoted to an alternative proof of Theorem 5.13 using
§ 5.2 and higher Hochschild theory. We first start with the following analogue of
Proposition 5.8.

Lemma 5.15. Let A be an E∞-algebra. The category A-ModE∞ of E∞-A-Modules
is equivalent as a symmetric monoidal (∞, 1)-category to the category of left modules
over the derived Hochschild chains CHS∞(A), viewed as an E1-algebra by forgetting
extra structure.

Proof. By Theorem 3.13, there is a canonical equivalence
∫
Sn
A ∼= CHSn(A) for

any n ∈ N.
The maps of operad E⊗i → E⊗i+1 are induced by the maps Ri ∼= Ri×{0} ↪→ Ri+1

which, by restriction induces canonical maps Si−1 ∼= Si ∩
(
Ri × {0}

)
↪→ Si, and,

by functoriality, maps φi : CHSi−1(A)→ CHSi(A).
By Lemma 5.10 (and Theorem 3.13), we get a commutative diagram

. . .
� � // A-ModEn+1 �

� //

'
��

A-ModEn

'
��

� � // . . . �
� // A-ModE1

'
��

. . . // CHSn(A)-LMod
φ∗n // CHSn−1(A)-LMod // . . .

φ∗0 // CHS0(A)-LMod

.

From Lemma 5.16, we deduce a natural equivalence

A-ModE∞ ∼= lim
n≥1

CHSn(A)-LMod.

Mimicking the proof of [GTZ2, Lemma 5.1.3], we get a natural equivalence

lim−→

(
CHS0(A)→ CHS1(A)→ · · · → CHSn(A)→ . . .

)
'−→ CHS∞(A).

It follows that we have an equivalence CHS∞(A)-LMod → lim
n≥1

CHSn(A)-LMod

and the lemma follows. �



HIGHER HOCHSCHILD COHOMOLOGY, BRANE TOPOLOGY AND CENTRALIZERS 47

Lemma 5.16. Let A be an E∞-algebra, then CHS∞(A) is canonically equivalent
to A as an E∞-algebra. In particular, there is a canonical equivalence

A-ModEn ∼= CHS∞(A)−ModEn

for any n ∈ {0, 1, . . . ,∞}.

Proof. This follows from Theorem 3.28 since S∞ has a deformation retraction to a
point. �

The canonical map E⊗n−1 → E⊗n yields a natural functorA-ModEn → A-ModEn−1

for any En-algebra A.

Lemma 5.17. Let A be an E∞-algebra. Then A-ModE∞ is the (homotopy) limit

A-ModE∞ ∼= lim
(
· · · → A-ModEn → A-ModEn−1 → · · · → A-ModE1

)
.

Proof. Recall that E⊗∞ ∼= colim
n≥1

E⊗n [Lu3, L-HA]. Since we have commuting restric-

tion maps A-ModE∞ → A-ModEn (n ∈ N), there is a canonical map

τ : A-ModE∞ −→ lim
n≥1

A-ModEn .

We want to prove that this map τ is an equivalence. Given any En-algebra A and an
En-A-module M , the trivial extension A⊕M has a natural structure of En-algebra.
The trivial extension functor M 7→ A ⊕M is a (natural in A) equivalence of ∞-
categories between A-ModEn and En-Alg/A which, by naturality, commutes with

the restriction of structure functors A-ModEn → A-ModEn−1 and En-Alg/A →
En−1-Alg/A. It follows that any object of lim

n≥1
A-ModEn is equivalent to an object

of lim
n≥1

En-Alg/A. Such an object is a (homotopy type of) chain complex equipped

with compatible En-structures for all n ≥ 1, thus is an E∞-algebra. It is also
endowed with compatible augmentations of En-algebras to A. Hence we get a map

ϕ : lim
n≥1

En-Alg/A −→ E∞-Alg/A

which is a quasi-inverse of the canonical map

τ : E∞-Alg/A −→ lim
n≥1

En-Alg/A

induced by the restrictions functors. The result now follows by applying the (quasi-
inverse of the) trivial extension functor. �

Proof of Theorem 5.13. The first statement follows from Lemmas 5.15 and 5.16 and
the last two statements are consequences of the first one. �

Example 5.18. Let A be an E∞-algebra and M be a left CHS∞(A)-module (here
CHS∞(A) is equipped with its canonical E1-structure by restriction of structure
along the operad maps (2)). Since CHS∞(A) is in fact an E∞-algebra, for any n ∈
{1, . . . ,∞}, it is canonically equivalent to its opposite En-algebra CHS∞(A)op. The

equivalence is explicitly given by the antipodal map S∞
ant→ S∞ (and functoriality of

Hochschild chains). Thus, there is a canonical structure of CHS∞(A)⊗CHS∞(A)-
E∞-modules on CHS∞(A). By restriction of structure, the map

CHS∞(A)
1⊗id−→ CHS∞(A)⊗ CHS∞(A)
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endows CHS∞(A) with a right module structure over itself (viewed as an E1-
algebra) which commutes with the CHS∞(A)-module structure induced by the
map

CHS∞(A)
id⊗1−→ CHS∞(A)⊗ CHS∞(A).

This extra structure of CHS∞(A) endows the tensor product (of a right and left
module over CHS∞(A) viewed as an E1-algebra)

CHS∞(A)⊗CHS∞ (A) M

with a structure of E∞-module.

Remark 5.19 (Iterative liftings). One can lift any left A-module to an A-E∞-
module in the same way as in Example 5.18.

By restriction of structure, any left A-module map between E∞-A-modules can
be lifted to a map of En-modules (for n ∈ N∪{∞}). For the sake of explicit compu-
tations, we now explain how to realize this concretely using the higher Hochschild
functor. Let M , N be E∞-modules over A. By restriction of structure we get in
particular left A-modules structure on M and N . Let f : M → N be a map of left
A-modules.

The natural structure of A ⊗ Aop-E∞-module structure on A also yields, by
restriction of structure, Proposition 5.8 and Lemma 3.13, a natural structure of left

A⊗
(
CHSn−1(A)

)op
-module on A where the left factor A is viewed as an E1-algebra

only.
It follows that, viewing N as left A-module only by restriction, HomA(A,N) is

endowed with a natural left CHSn−1(A)-module structure and further that we have

a natural isomorphism of left CHSn−1(A)-modules HomA(A,N)
'→ N (given by

f 7→ f(1)). We get similarly a left CHSn−1(A) ⊗ Aop-module structure on A and

a natural equivalence of left CHSn−1(A)-modules A⊗AM
'→M (where the tensor

product is over A viewed as an E1-algebra only).
We now explain how to lift f to an En-module map (here n ∈ {1, . . . ,∞}).

The canonical map Dn → pt being a homotopy equivalence, we get a natural quasi-
isomorphism CHDn(A)

∼→ A with quasi-inverse induced by the map sending a point
to the center of Dn. The canonical map Sn−1 ↪→ Dn given by the boundary of
Dn gives a map of E∞-algebra CHSn−1(A)→ CHDn(A) which, together with the
previous morphism, endow CHDn(A) with a structure of left CHSn−1(A) ⊗ Aop-
module. We thus have a natural quasi-isomorphism (of chain complexes)

HomCHSn−1 (A)(M,N) ∼= HomCHSn−1 (A)

(
A⊗AM,HomA(A,N)

)
∼−→ HomCHSn−1 (A)

(
CHDn(A)⊗AM,HomA(A,N)

)
'−→ HomA

(
A⊗CHSn−1 (A) CHDn(A)⊗AM,N)

)
where the last map is the canonical isomorphism

ψ 7→
(
x⊗CHSn−1 (A) y ⊗A m 7→ ±ψ(y ⊗A m)(x)

)
where the sign ± is given by the Koszul-Quillen signs rule.

Note that there is an equivalence of E∞-algebras A ⊗CHSn−1 (A) CHDn(A)
'←

CHSnA which induces, by restriction, a quasi-isomorphism of left A⊗Aop-modules
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(induced by the choice of two antipodal points on Sn). We thus get a quasi-
isomorphism

HomA

(
A⊗CHSn−1 (A) CHDn(A)⊗AM,N)

) '−→ HomA

(
CHSn(A)⊗AM,N)

)
hence an explicit quasi-isomorphism

(31) HomCHSn−1 (A)(M,N)
'−→ HomA

(
CHSn(A)⊗AM,N)

)
.

The canonical map Sn → pt also yield a map of E∞-algebras CHSn(A) → A,
which, by restriction of structures is also a map of left A ⊗ Aop-modules. Hence;
we have a natural morphism

(32) HomA(M,N) ∼= HomA(A⊗AM,N) −→ HomA

(
CHSn(A)⊗AM,N)

)
.

Thus, for any n, we can lift the left module map f ∈ HomA(M,N) to a map
of left CHSn−1(A)-module hence a map of A-En-module (by Proposition 5.8 or
Lemma 5.15). Note that by Lemma 5.16 the map CHS∞(A) → A is a quasi-
isomorphism, hence the map (32) is a quasi-isomorphism for n =∞ and the lift of
f is unique in that case. However, lift of f to En-module maps are not unique in
general for finite n.

Remark 5.20 (CDGA case). When A is a CDGA (over a field), the Hochschild
chain complex CHDn(A) is a semi-free module over CHSn−1(A) (provided we choose
a simplicial model Dn

• for Dn and take ∂Dn
• as a model for Sn−1), and therefore all

equivalences involved in the maps (31) and (32) can be (quasi-)inverted by standard
homological algebra techniques. Note that when A = C∗(X) is the algebra of
cochains for a topological space X, the map of E∞-algebras CHSn(A)→ A can be
factorized as a map

CHSn(C∗(X))→ C∗(Map(Sn, X))→ C∗(X)

where the last map is induced by the map X → Map(Sn, X) that sends every
point in p ∈ X to a constant map Cp : Sn → X defined as Cp(a) = p. Hence, in
the special case n = 1, we recover the construction of [FTV], which was done for
M = C∗(X) and N = C∗(X) only.

5.4. Poincaré duality as a map of E∞-modules. We apply the results of the
previous sections to achieve an E∞-lift of the Poincaré duality isomorphism for a
closed manifold.

Let C be an E∞-coalgebra and let C∨ = Homk(C, k) be its linear dual endowed
with its canonical E∞-algebra structure; in particular, C∨ is naturally a E∞-C∨-
module. Similarly, the dual space (C∨)∨ is E∞-C∨-module. Note that C ⊂ (C∨)∨

has an induced E∞-C∨-module structure. If C is an E1-coalgebra, then C∨ is an
E1-algebra has well.

We recall the following standard definition of the cap-product

Definition 5.21. Let C be an E1-coalgebra. The cap-product is the composition

∩ : C∨ ⊗ C id⊗∆−→ C∨ ⊗ C ⊗ C 〈−,−〉⊗id−→ C

where ∆ : C → C ⊗ C is the coproduct (given by the E1-structure of C) and
〈−,−〉 : C∨⊗C → k is the duality pairing. The cap-product of x ∈ C∨, y ∈ C will
be denoted x ∩ y as usual.
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The cap-product map ∩ : C∨ ⊗ C → C allows us to associate to any cycle c in
C, a map of left C∨-modules ∩c : C∨ → C, x 7→ x ∩ c, called the cap-product by c.
Note that this construction only uses the underlying E1-coalgebra structure of C
(even if C is an E∞-algebra).

Corollary 5.22. Let C be an E∞-coalgebra. The cap product by c, C∨
∩c−→ C, lifts

uniquely to a map of E∞-modules ρc : C∨ → C which is an equivalence if ∩c is a
quasi-isomorphism.

Proof. The cap-product by c, denoted ∩c : C∨ → C, is a map of left modules
over C∨ (seen as an E1-algebra) because ∆ : C → C ⊗ C is an E1-coalgebra
structure. It follows from Theorem 5.13 that the unique lift exists. If ∩c is a quasi-
isomorphism, then it is an invertible element in HomC∨(C∨, C) and thus its lift is
invertible in HomCHS∞ (C∨)(C

∨, C) (see Remark 5.19 for an explicit description of
the equivalence). �

We now specialize to the case where C is the singular cochain of a space. Let us
recall the following definition.

Definition 5.23. By a Poincaré duality space, we mean a topological space X
together with a choice of cycle [X] ∈ Cd(X) (for some integer d) such that that

cap-product C∗(X)
∩[X]−→ Cd−∗(X) by [X] is a quasi-isomorphism. The integer d is

called the dimension of X and denoted d = dim(X).

Example 5.24. An oriented20 closed manifold M of dimension dim(M) (in the
usual manifold sense of dimension) is a Poincaré duality space of dimension dim(M).

Remark 5.25. By definition, the cap product by a class [X] is given by f 7→∑
f
(
[X](1)

)
[X](2) (where we denote ∆([X]) :=

∑
[X](1) ⊗ [X](2) the coproduct).

It follows that the image χX
(
H∗(X)

)
is a finitely generated sub k-module of H∗(X).

Thus, if X is a Poincaré duality space, its (co)homology groups are finitely generated
(as k-modules).

Let X be a Poincaré duality space (for instance, an oriented closed manifold)
with fundamental class [X]. Recall that C∗(X) is the singular cochains of X with its
natural structure of E∞-coalgebra (Example 2.6). Its linear dual C∗(X) is endowed
with the dual E∞-algebra structure. Then, by Corollary 5.22 we have

Corollary 5.26. Let (X, [X]) be a Poincaré duality space. The cap-product by [X]
induces a quasi-isomorphism of E∞-C∗(X)-modules

(33) χX : C∗(X)
'−→ C∗(X)[dim(X)]

realizing the (unique) E∞-lift of the Poincaré duality isomorphism.

In other words, a Poincaré duality space X (in the sense of Definition 5.23)
gives rise to a canonical equivalence of E∞-modules between its singular chains
and cochains.

Definition 5.27. Let (X, [X]), (Y, [Y ]) be Poincaré duality space (of same dimen-
sion d = dim(X) = dim(Y )). A map of Poincaré duality space f : (X, [X]) →

20with respect to the homology with coefficients in the ground ring k
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(Y, [Y ]) is a map of topological spaces f : X → Y such that the following diagram
is commutative

C∗(X)
∩[X] // C∗(X)[d]

f∗

��
C∗(Y )

∩[Y ] //

f∗

OO

C∗(Y )[d]

in C∗(Y )-ModE∞ .

Example 5.28. Let f : M → N be a continuous map between oriented smooth
manifolds such that f∗([M ]) = [N ]. Then f induces a map of Poincaré duality
spaces.

6. Centralizers

Given any map f : A→ B of E∞-algebras, by Theorem 4.12, there is a natural
En-algebra structure on CHSn(A,B). On the other hand, for a map f : A→ B of
En-algebras, Lurie [L-HA, Lu3] constructs an En-algebra z(f). We prove in § 6.3
that CHSn(A,B) is equivalent to z(f) as an En-algebra. This will be a corollary
of a more general construction for En-Hochschild cohomology. Indeed, Hochschild
cochains modeled on spheres CHSn(A,B) is a special case of En-Hochschild coho-
mology HHEn(A,B) of A,B viewed as En-algebras, see § 6.1. In Section 6.2, in
the general case of a map f : A→ B between En-algebras, we will give an explicit
En-algebra structure on HHEn(A,B) , similar to the one obtained in Section 4.2.
We then prove that HHEn(A,B) is equivalent to z(f). We will apply these results
to the case A = B, i.e., to get solutions of the (higher) Deligne conjecture in § 6.4.

6.1. En-Hochschild cohomology and Hochschild cohomology over Sn. There
is an (operadic) notion of cohomology for En-algebras closely related to their de-
formation complexes, see [F1, KS]. We start with the following definition.

Definition 6.1. Let M be an En-A-module over an En-algebra A. The En-
Hochschild complex of A with values M , denoted by HHEn(A,M), is by defi-

nition (see [F1]) RHomEnA (A,M). Here RHomEnA denotes the hom space in the
(∞-)category A-ModEn of En-A-modules.

In particular, if A is an Em-algebra with m ∈ {n, n + 1 . . . ,∞} (for instance a
CDGA), we can define the En-Hochschild complex of A HHEn(A,A).

In the case where A is an E∞-algebra, its En-Hochschild complex can be de-
scribed by higher Hochschild cochains over the n-dimensional sphere Sn:

Proposition 6.2. If A is an E∞-algebra and M an E∞-A-module, there is a
natural equivalence

HHEn(A,M) ∼= CHSn(A,M),

where CHSn denotes the derived higher Hochschild cochain functor.

Proof. Given left modules M,N over an E1-algebra R, we write RHomleft
R (M,N)

for the hom space in the (∞,1)-category R-LMod of left R-modules. By Propo-
sition 5.8, there is an equivalence of ∞-categories A-ModEn ∼=

( ∫
Sn−1 A

)
-LMod

where
∫
Sn−1 A is the factorization homology of Sn−1 with value in A. Here, Sn−1 is

endowed with the n-framing induced by the natural embedding Sn−1 ↪→ Rn. Thus
we have a sequence of natural equivalences
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HHEn(A,M) ∼= RHomEnA (A,M)

∼= RHomleft∫
Sn−1 A

(A,M)

∼= RHomleft∫
Sn−1 A

(∫
Dn

A,M

)
∼= RHomleft

CHSn−1 (A) (CHDn(A),M)

∼= RHomleft
A

(
CHDn(A)⊗L

CHSn−1 (A) A,M
)

∼= RHomleft
A (CHSn(A),M)

∼= CHSn(A,M).

Here we are using the natural equivalence of En-A-modules
∫
Dn

A
'→ A (Lemma 5.12).

Note that, by Theorem 3.13, when A is further an E∞-algebra, we get a natural
equivalence of E1-algebras

∫
Sn−1(A) ∼= CHSn−1(A) and by Theorem 3.28 a natural

equivalence of E∞-algebras CHSn(A) ∼= CHDn(A)⊗L
CHSn−1 (A) A . �

Remark 6.3. Let A,B be En-algebras and f : A → B an En-algebra map so
that B inherits an A-En-module structure. By Definition 6.1, Proposition 5.8 and
Lemma 5.12, we have natural equivalences

HHEn(A,B) ∼= RHomEnA

(
A,B

)
∼= RHomleft∫

Sn−1 A

(∫
Dn

A,

∫
Dn

B
)
.

6.2. The En-algebra structure on En-Hochschild cohomology HHEn(A,B).
In this section, we construct an explicit En-algebra structure on the En-Hochschild
cohomology HHEn(A,B) of an En-algebra A with value in an En-algebra B en-
dowed with an A-En-module structure given by a map A→ B of En-algebras.

We fix a map f : A → B of En-algebras and we endow B with the induced
A-En-module structure so that we have En-Hochschild cohomology21 HHEn(A,B).

Recall from Section 2.4 (and [Lu3, L-HA]) that giving an En-algebra structure

to HHEn(A,B) ∼= RHomEnA

(
A,B

)
is equivalent to giving a structure of locally

constant factorization algebra on Dn whose global section22 are RHomEnA

(
A,B

)
.

That is, we need to associate to any disk U ⊂ Dn a chain complex HHEn

(
A,B

)(
U
)

naturally quasi-isomorphic to RHomEnA

(
A,B

)
equipped with natural chain maps

from

(34) ρU1,...,U`,VHHEn

(
A,B

)(
U1

)
⊗ · · · ⊗HHEn

(
A,B

)(
U`
)
→ HHEn

(
A,B

)(
V
)

for any pairwise disjoint (embedded) sub-disks Ui in a bigger disk V .

Let A, B be the underlying locally constant factorization algebras on Dn asso-
ciated to A and B given by Theorem 2.29 and still denote f : A → B the induced
map of factorization algebras. In other words:

we assume from now on that A, B and f are given by locally constant factoriza-
tion algebras as in Section 2.4.

21which depends on the map f : A→ B even though it is not explicitly written in the notation
22,i.e., its factorization homology over the whole disk Dn
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f

g1

g2

g3

V

U1

U2

U3

Figure 1. The factorization algebra map A|V → B|V obtained by
applying the relevant maps of modules g1, g2, g3 (viewed as maps
of factorizations algebras) and the En-algebra map f : A → B on
the respective regions

Similarly, given any map of A-En-modules g : A → B, by Proposition 5.6, we
can assume that g is given by a map g : A → B of (stratified) factorization algebras,
as well as, by Proposition 5.8 a map of (left)

∫
Sn−1 A-modules g :

∫
Dn

A→
∫
Dn

B.

Remark 6.4 (Sketch of the construction). We first sketch the idea of the construc-

tion. For any sub-disk Ui, we can think of HHEn(A,B) ∼= RHomEnA (A,B) as the
space of stratified factorization algebras maps on the disk Ui (with a distinguished
point ∗i, see Proposition 5.6). Hence, given g1, . . . , g` ∈ HHEn(A,B), we define
the structure map (34) ρU1,...,U`,V (g1, . . . , g`) to be the factorization algebra map
which, to any sub-disk D inside a given Ui associates gi(D) and, to any disk D
inside (a small neighborhood of) the complement of the Ui’s associates f(D). The
family of those disks is a basis of all disks inside V , so that such a rule does define a
factorization algebra map, which underlies a map of A-E-modules (see Remark 5.7).
This is roughly described in Figure 1.

We now construct the locally constant factorization algebra on Rn we are looking
for.

6.2.1. Step 1: the underlying chain complexes. For any open subset U , the restric-
tions A|U , B|U are locally constant factorization algebras23 on U , and f|U : A|U →
B|U a factorization algebra morphism. Thus, if U is a disk24, A(U) (∼=

∫
U
A) is an

En-algebra and f|U =
∫
U
f makes B(U) ∼=

∫
U
B an A(U)-En-module25. In partic-

ular, given any point ∗U in U , the restrictions A|U , B|U are canonically stratified
factorization algebras on the pointed disk U and further define canonical objects in

FaclcU∗U |AU
↪→ Faclc,resU∗U

, see Definition 5.3.

23quasi-isomorphic to A and B by definition
24that is an open set homeomorphic to a disk
25in this section we will write

∫
U A for A(U) viewed as an En-module over itself and reserve

the notation A(U) when we think of it as an En-algebra
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Thus to any open disk U , we can associate the following object of k-Mod∞:

(35) RHomEnA

(
A,B

)(
U
)

:= RHomEnA(U)

(∫
U

A,

∫
U

B
)

Note that RHomEn
(
A,B

)(
U
)

is pointed since our starting map of En-algebras

f : A→ B induces a canonical element
∫
U
f ∈ RHomEnA

(
A,B

)(
U
)
.

6.2.2. Step 2: the structure maps. By Proposition 2.28, we only need to construct

the factorization algebra RHomEnA

(
A,B

)(
U
)

on the basis of opens subsets CVX
consisting of all bounded open convex subsets of Dn. The basis CVX is stable by
finite intersection and a factorizing cover. Note that if U ∈ CVX with center ∗U ,
then (see Remark 6.3)

RHomEnA

(
A,B

)(
U
)

= RHomleft∫
U\{∗U}

A

(∫
U

A,

∫
U

B
)

which is the mapping space between the associated stratified (in ∗U ) factorization
algebras A|U , B|U corresponding to the module structures of

∫
U
A,
∫
U
B as given

by Proposition 5.6.
For pairwise disjoints disks U1, . . . , Ur ∈ CVX included in a larger disk D ∈ CVX ,

we define the structure map

(36)

RHomEnA

(
A,B

)(
U1

)
⊗· · ·⊗RHomEnA

(
A,B

)(
Ur
) ρU1,...,Ur,D−→ RHomEnA

(
A,B

)(
D
)

as follows. Denote ∗1, . . . , ∗r, the respective centers of the Ui’s. First we use
U1, . . . , Ur to define the cover UU1,...,Ur,V consisting of all opens V in D which

• either do not contain any ∗i: V ⊂ D \ {∗1, . . . , ∗r},
• or else is included in one of the Ui and is a neighborhood of ∗i.

Maps of factorization algebras over D are uniquely determined by their value on
UU1,...,Ur,V since it is a factorizing cover of D. Let be given maps gi :

∫
|Di A →∫

|Di B of (left) A(Ui)-modules (i = 1 . . . r) and also denotes gi : A|Di → B|Di
the induced maps of stratified (at the point ∗i) factorization algebras. We define
ρU1,...,Ur,D (g1, . . . , gr) on an open V ∈ UU1,...,Ur,V by:

(37) ρU1,...,Ur,D (g1, . . . , gr)|V =

{
f|V if V ⊂ D \ {∗1, . . . , ∗r},
gi|V if ∗i ∈ V ⊂ Ui.

Lemma 6.5. The rule V 7→ ρU1,...,Ur,D (g1, . . . , gr)|V (given by Formula (37)),

defines a map of factorization algebras26:

ρU1,...,Ur,D (g1, . . . , gr) ∈ MapFaclc,resD∗
(A|D,B|D).

Proof. First we check that ρU1,...,Ur,D (g1, . . . , gr) defines a factorization algebra
map. Since UU1,...,Ur,V is a factorizing cover of D, we only need to check that it is
compatible with the structure maps of A and B. If all opens involved lies either in
D \ {∗1, . . . } or contains a same point ∗i, then the result is immediate since f and
gi are maps of factorization algebras. Now, assume ∗i ∈ V ⊂ Ui and that there
are pairwise disjoint opens V1, . . . , V` ⊂ V (at most one of them can contain ∗i).

26where Faclc,resD∗
is given by Definition 5.3
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Since gi comes from a map of En-A-modules (with module structure induced by f),
gi|Vk = f|Vk whenever Vk does not contain ∗i. It follows that the following diagram⊗

i=1...`A(Vk)

⊗
i=1...` ρU1,...,Ur,D

(g1,...,gr)|Vk
��

ρV1,...,V`,V // A(V )

gi

��⊗
i=1...` B(Vk)

ρV1,...,V`,V // B(V )

is commutative, hence ρU1,...,Ur,D (g1, . . . , gr) is a map of (pre-)factorization alge-
bras. �

Lemma 6.6. The induced (by Lemma 6.5) map∫
D

ρU1,...,Ur,D (g1, . . . , gr) ∈ RHomEnA(D)

(∫
D

A,

∫
D

B
)

is a map of A(D)-En-modules.

In particular, we define the map (36) to be the global section
∫
D
ρU1,...,Ur,D (g1, . . . , gr)

of the maps defined by formula (37).

Proof of Lemma 6.6. Passing to the global section in Lemma 6.5, we have the map
ρU1,...,Ur,D (g1, . . . , gr)

(
D
)

: A→ B and we need to prove that it is a map of A(D)-
En-module. By Proposition 5.8, it is equivalent to prove that the induced map∫
D
ρU1,...,Ur,D (g1, . . . , gr) :

∫
D
A →

∫
D
B is a morphism of left

∫
Sn−1 A-modules

(where the module structure is induced by f). Let D̃ be a closed sub-disk of D

containing U1

∐
· · ·
∐
Ur. The open sub-set D \ D̃ ∼= Sn−1× (0, ε′) lies in the com-

plement (in D) of the Ui’s. Since
∫
Sn−1 A is the section

∫
Sn−1 A = A

(
Sn−1×(0, ε′)

)
(Theorem 2.20), we are left to prove that the map ρU1,...,Ur,D (g1, . . . , gr) restricted

to D\D̃ ∼= Sn−1×(0, ε′) is equivalent to f . This is an immediate consequence of the

fact that D \ D̃ ⊂ D \ {∗1, . . . , ∗i} and
(
ρU1,...,Ur,D (g1, . . . , gr)

)
|D̃⊂D\{∗1,...,∗i}

= f

as given by construction (37). �

Remark 6.7. Let us consider the case of the inclusion of the empty set ∅ inside a
disk D. Unwinding the definition of the structure map

ρ∅,D : k ∼= RHomEnA

(
A,B

)(
∅
)
−→ RHomEnA

(
A,B

)(
D
)

we see immediately that ρ∅,D(1) =
∫
D
f , in other words 1 is mapped to the base

point of RHomEn
(
A,B

)(
D
)
.

A straightforward computation also shows that

ρU1,...,Ur,D

(∫
U1

f, . . . ,

∫
Ur

f
)

=

∫
D

f.

6.2.3. Step 3: the global structure. The cochain complexes U 7→ RHomEnA

(
A,B

)(
U
) ∼=

HomEnA(U)

( ∫
U
A,
∫
U
B
)

are equipped with the structure maps (36) (given by for-

mula (37) and Lemma 6.6). These maps assemble to form a locally constant factor-

ization algebra over Rn, yielding an En-algebra structure to RHomEnA
(
A,B

)
. This

is the content of the following result:
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Theorem 6.8. Let f : A→ B be a map of En-algebras27.

(1) The structure maps (41) ρU1,...,Ur,V (given by step 2 above) make U 7→
RHomEnA

(
A,B

)(
U
)

a locally constant factorization algebra on Rn whose

global section are naturally equivalent to RHomEnA

(
A,B

)
.

(2) In particular HHEn(A,B) ∼= RHomEnA
(
A,B

)
inherits a natural En-algebra

structure (with unit given by f).
(3) Let g : B → C be another map of En-algebrass28. The (derived) functor of

composition of En-modules homomorphisms

RHomEnA
(
A,B

)
⊗RHomEnB

(
B,C

) ◦−→ RHomEnA
(
A,C

)
is a homomorphism of En-algebras29.

(4) Let h : C → D be an En-algebra map. The canonical map

RHomEnA
(
A,B

)
⊗RHomEnC

(
C,D

)
−→ RHomEnA⊗C

(
A⊗ C,B ⊗D

)
is a homomorphism of En-algebras.

The naturality (in B) of the En-algebra structure of RHomEnA
(
A,B

)
means that,

given a morphism φ : B → B′ of En-algebras, the induced map

φ∗ : RHomEnA
(
A,B

)
→ RHomEnA

(
A,B′

)
(given by g 7→ φ ◦ g)

is an En-algebra morphism. Here, the A-module structure of B is of course given
by the En-algebra morphism φ ◦ f : A→ B′. Similarly, the naturality in A means
that, given a morphism ψ : A′ → A of En-algebras, the induced map

ψ∗ : RHomEnA
(
A,B

)
→ RHomEnA′

(
A′, B

)
(given by g 7→ g ◦ ψ)

is an En-algebra morphism.

Proof of Theorem 6.8. Since the global section F(Rn) of a locally constant factor-
ization algebra F on Rn is an En-algebra (Theorem 2.29), the second statement is
an immediate consequence of the first one.

We now prove the first one. Proposition 2.28 implies that we need only to check
the axioms of a locally constant factorization algebra on the basis of opens CVX .

First we prove the naturality of the structure maps (36) with respect to the
inclusion of open convex disks (in other words we check the prefactorization al-
gebra axiom). That is we need to check that for a family of pairwise disjoints

disks U1, . . . Ur ∈ CVX inside a disk V ∈ CVX and families W j
1 . . .W

j
ij

of pairwise

disjoints convex disks inside Uj (for j = 1 . . . r) we have

(38) ρU1,...,Ur,V

(
ρW 1

1 ,...,W
1
i1
,U1
, . . . , ρW r

1 ,...,W
r
ir
,Ur

)
= ρW 1

1 ,...,W
1
i1
,...,W r

1 ,...,W
r
ir
,V .

We write respectively ∗i and ∗iij for the centers of the Ui’s and W i
ij

’s. Recall

that the structure maps in the above identity (38) are obtained by applying the
construction (37) on the relevant opens subsets. Thus the right hand side of (38)

is the global section of the map of factorization algebras which is equal to gjik on a

open W j
ik

which contains ∗jik and f on opens lying in the complement of ∗si` .

27which we may assume to be given by a map f : A → B of factorization algebras, see § 2.4
28which we may assume to be given by a map g : B → C of factorization algebras, see § 2.4
29the left hand side being endowed with the En-algebra structure induced on the tensor

products of En-algebras and the A-module structure on C being given by the En-algebra map

g ◦ f : A→ C
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To evaluate the left hand side, we first define a specific cover of V as follows.
For each Ui (i = 1 . . . r), we choose a convex closed sub-disk of Ui which contains
each W i

j and ∗i. We write coli for its complement in Ui. Then, we have a cover

of V given by the Ui’s and U∂ = V \
(∐r

i=1(Ui − coli)
)
. The left hand side of

identity (38) is determined by its restriction on the cover (see § 2.4 and [CG, G2]).
By construction (37), the map ρU1,...,Ur,V |U∂ is equal to f|U∂ . Let i ∈ {1, . . . , r}
and D be an opens in Ui. If ∗ij ∈ D ⊂W i

j , by construction (37), the composition

ρU1,...,Ur,V

(
ρW 1

1 ,...,W
1
i1
,U1

(g1
1 , . . . , g

1
i1), . . . , ρW r

1 ,...,W
r
ir
,Ur (g

r
1, . . . , g

r
ir )
)
|D

(V )

on the open V is given by gij : A|Wk
j
→ B|Wk

j
, that is, is equal to

∫
V
gij . While

if D ⊂ Ui \ {∗i1, . . . , ∗iji}, then this composition is equal to
∫
V
f . Note that the

composition agrees with the map induced by f on the intersection of the Ui’s with
U∂ . It follows that the left hand side of identity (38) is the unique factorization
algebra map which coincides with gij on each open subset of W i

j containing ∗ij
and coincides with f on opens which do not contains any ∗ij . It is thus equal to
the right hand side of (38). We have proved that the structure maps ρU1,...,Ur,V

satisfies the associativity condition of a prefactorization algebra. They also satisfy
the symmetry condition since they are independent of any ordering of the opens
U1, . . . , Ur.

It remains to check that U 7→ RHomEnA

(
A,B

)(
U
)

is locally constant. Since the

factorization algebras A and B are locally constant, the natural maps
∫
U
A →

∫
V
A

and
∫
U
B →

∫
V
B are equivalences for any embedding U ↪→ V of a disk U inside a

bigger disk V . By definition we have

RHomEnA

(
A,B

)(
U
) ∼= HomEnA(U)

(∫
U

A,

∫
U

B
)
,

RHomEnA

(
A,B

)(
V
) ∼= HomEnA(V )

(∫
V

A,

∫
V

B
)
.

By definition, for any g ∈ RHomEnA
(
A,B

)(
U
)
, the map

ρU,V : HomEnA(U)

(∫
U

A,

∫
U

B
)
−→ HomEnA(V )

(∫
V

A,

∫
V

B
)

applied to g is induced by a map of factorization algebras ρU,V (g) : A|V → B|V
whose restriction to U is just g. It follows that the following diagram is commutative

∫
V
A

ρU,V (g) //
∫
V
B

∫
U
A

g //

'

OO

∫
U
B

'

OO

for all g ∈ RHomEnA
(
A,B

)(
U
)
. Since the vertical maps are equivalences and inde-

pendent of g, it follows that ρU,V : HomEnA(U)

( ∫
U
A,
∫
U
B
)
→ HomEnA(V )

( ∫
V
A,
∫
V
B
)
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is an equivalence. Note in particular that, taking V = Rn, we have canonical equiv-
alences

RHomEnA

(
A,B

)(
U
) ∼= HomEnA(U)

(∫
U

A,

∫
U

B
)

∼= HomEnA(Rn)

(∫
Rn
A,

∫
Rn
B
)
∼= RHomEnA

(
A,B

)
for any disk U in Rn.

A map of En-algebras g : B → C induces a canonical object in RHomEnB (B,C)
given by g itself. Thus the naturality of the En-algebra structure (claimed in as-
sertion (2)) is in fact a consequence of the assertion (3) in the Theorem (that
we will prove below). To finish the proof of claims (1), (2) in the Theorem we

need to see that the canonical element f ∈ RHomEnA (A,B) is a unit. Indeed, let
U1, . . . , Ur, V be a finite family of pairwise disjoints convex disks inside a bigger
bounded convex open set D, and gi ∈ RHomEnA (A,B)(Ui) (i = 1 . . . r). Denote

∗1, . . . , ∗r, ∗V the respective centers of Ui’s and V . Let also f ∈ RHomEnA (A,B)(V )
be the canonical element induced by f . By definition (see construction (37))
ρU1,...,Ur,V,D(g1, . . . , gr, f) is the factorization algebra map whose values on any
open subset W ⊂ V \ {∗1, . . . , ∗r, ∗V } is given by (the restriction to V of) f , whose
value on any open subset ∗i ∈W ⊂ Ui is given by gi and its value on ∗V ∈W ⊂ V
is again given by f . It follows that this map is equal to f on all V and thus we get

ρU1,...,Ur,V,D(g1, . . . , gr, f) = ρU1,...,Ur,D(g1, . . . , gr).

This proves that f is a unit for the En-algebra structure of RHomEnA (A,B).

We now prove statement (3). Since the B-module structure of C is given by the

En-algebra map g : B → C, the (derived) composition of maps RHomEnA
(
A,B

)
⊗

RHomEnB
(
B,C

) ◦−→ Homk-Mod∞

(
A,C

)
naturally lands in RHomEnA (A,C), where

C is endowed with the A-module structure induced by the En-algebra morphism
g ◦ f : A → C. Since the tensor product of En-algebras is induced by the tensor
products of (locally constant) factorization algebras, it remains to prove that, for
any family U1, . . . , Ur of pairwise disjoint open disks included inside a bigger disk
D, the following diagram
(39)

r⊗
i=1

(
RHomEnA

(
A,B

)
(Ui)⊗RHomEnB

(
B,C

)
(Ui)

)
ρ⊗2
U1,...,Ur,D

��

r⊗
i=1
◦
//
r⊗
i=1

RHomEnA
(
A,C

)
(Ui)

ρU1,...,Ur,D

��
RHomEnA

(
A,B

)
(D)⊗RHomEnB

(
B,C

)
(D)

◦ // RHomEnA
(
A,C

)
(D)

is commutative in k-Mod∞. Let be given φi ∈ RHomEnA
(
A,B

)
(Ui) and ψi ∈

RHomEnB
(
B,C

)
(Ui). We keep denoting φi : A|Ui → B|Ui and ψi : B|Ui → C|Ui the

induced maps of factorization algebras. The result of the two compositions in dia-
gram (39), namely ρU1,...,Ur,D(ψ1, . . . , ψr) ◦ ρU1,...,Ur,D(φ1, . . . , φr) and ρU1,...,Ur,D ◦(
⊗ri=1 ψi ◦φi

)
are both global sections over D of factorization algebras morphisms.
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It is thus enough to prove that the underlying diagram of factorizations algebras

(40) A|D

ρU1,...,Ur,D

(
⊗ri=1ψi◦φi

)
|D

++

ρU1,...,Ur,D
(ψ1,...,ψr)|D◦ρU1,...,Ur,D

(φ1,...,φr)|D

33 C|D

is commutative (here the structure maps are given by construction (37)).
It is sufficient to prove the result on the stable under finite intersection factorizing

basis UU1,...,Ur,D given in step 2 (§ 6.2.2). The upper arrow in diagram (40) is
simply the factorization algebra map which is equal to ψi ◦phii on any open subset
∗i ⊂W ⊂ Ui and is equal to g◦f for any other W ∈ UU1,...,Ur,D. On the other hand
the lower map in diagram (40) is the composition of two factorizations algebras
maps: one of which being given by φi on any open subset ∗i ⊂ W ⊂ Ui and f
on any other W ∈ UU1,...,Ur,D; while the other one is given by ψi on any open
subset ∗i ⊂ W ⊂ Ui and g on any other W ∈ UU1,...,Ur,D. The commutativity of
diagram (40) follows on UU1,...,Ur,D and thus diagram (39) also commutes.

It remains to prove statement (4) in Theorem 6.8 which is almost trivial: let
h : C → D be an En-algebra map and denote C, D the associated factorization
algebras on Rn. By [L-HA, Theorem 5.3.3.1],∫

U∪V
A ∼=

∫
U

A⊗
∫
V

A

for any En-algebra A and disjoint open sets U, V . Thus, the factorization algebra
associated (in Proposition 5.8) to A ⊗ C is given by U 7→ A(U) ⊗ C(U). For any
pairwise disjoints open convex disks U1, . . . , Ur included in a bigger convex disk
V ⊂ Dn, and maps gi ∈ RHomEnA (A,B)(Ui), g

′
i ∈ RHom

En
C (C,D)(Ui) (i = 1 . . . r),

the map

ρU1,...,Ur,V

((
g1⊗· · ·⊗gr

)
⊗
(
g′1⊗· · ·⊗g′r

))
∈
(
RHomEnA (A,B)⊗RHomEnC (C,D)

)
(V )

∼= RHomEnA (A,B)(V )⊗RHomEnC (C,D)(V )

is the map obtained as the global section of a map of factorization algebras

ρU1,...,Ur,V

((
g1 ⊗ · · · ⊗ gr

)
⊗
(
g′1 ⊗ · · · ⊗ g′r

))
|V

: A|V ⊗ C|V → B|V ⊗D|V

as constructed in § 6.2.2. In particular, for any i ∈ {1, . . . , r}, its value in any
open subset ∗i ∈ W ⊂ Ui is given by the map gi ⊗ g′i : A|Ui ⊗ C|Ui → B|Ui ⊗ D|Ui .
Further, its value on any other open subset W ∈ UU1,...,Ur,V is given by f|V ⊗ g|V
(here we use freely the notations introduced in § 6.2.2 to define the structure maps
ρU1,...,Ur,V ).

Hence, the map ρU1,...,Ur,V

((
g1 ⊗ · · · ⊗ gr

)
⊗
(
g′1 ⊗ · · · ⊗ g′r

))
|V

identifies, on

(the factorizing and stable by finite intersection) cover UU1,...,Ur,V , with the map
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obtained by evaluating the composition( r⊗
i=1

RHomEnA (A,B)(Ui)
)
⊗
( r⊗
i=1

RHomEnC (C,D)(Ui)
)

−→
r⊗
i=1

RHomEnA⊗C(A⊗ C,B ⊗D)(Ui)

ρU1,...,Ur,V−→ RHomEnA⊗C(A⊗ C,B ⊗D)(V )

at the tensor product
(
g1⊗· · ·⊗gr

)
⊗
(
g′1⊗· · ·⊗g′r

)
. This proves that the canonical

maps

RHomEnA
(
A,B

)
(V )⊗RHomEnC

(
C,D

)
(V ) −→ RHomEnA⊗C

(
A⊗ C,B ⊗D

)
(V )

assembles into a map of factorization algebras and, consequently,

RHomEnA
(
A,B

)
⊗RHomEnC

(
C,D

)
−→ RHomEnA⊗C

(
A⊗ C,B ⊗D

)
is a homomorphism of En-algebras. �

Remark 6.9. The En-algebra structure given by Theorem 6.8 is in fact the solution
of a universal property as will be given by Proposition 6.22 below which identifies
HHEn(A,B) with the centralizer of the map f : A→ B.

Example 6.10. Assume n = 1, then

HHE1(A,B) ∼= RHomE1A
(
A,B

) ∼= RHom∫
S0 A

(
A,B

) ∼= RHomA⊗Aop
(
A,B

)
is the standard Hochschild cohomology of the algebra A with value in the algebra
B. It is straightforward that the E1-structure given by Theorem 6.8 is induced on
the standard Hochschild complex by the usual cup-product [Ge].

Example 6.11. Assume A = k the ground ring and let f : k → B be the unit
map. We have a canonical equivalence RHomEnk (k,B) ∼= B in k-Mod∞. This
equivalence is in fact an equivalence of En-algebras30. Since f : k → B is the unit
map, it is immediate from the definition of the structure maps (41) to check that

the locally constant factorization algebra structure of RHomEnk (k,B) is the one of
B, the locally constant factorization algebra on Rn associated to B (in § 2.4).

Remark 6.12. Since the factorization algebra constructed by Theorem 6.8 is lo-
cally constant, in particular, its value RHomEnA

(
A,B

)
(U) on any (non-necessarily

convex) disk U is RHomEnA(U)

( ∫
U
A,
∫
U
B
)

as asserted in step 1 (§ 6.2.1).

One can describe directly the structure maps ρU1,...,Ur,D associated to pairwise
disjoint subdisks U1, . . . , Ur of a disk D (that is without further covering them by
convex subsets). This can be done as follows. First, we use U1, . . . , Un to see the
factorization algebra A restricted to D, denoted A|D, as obtained by gluing together
r + 1-factorization algebras on D (see § 2.3 and [CG]). Note that the A(U)-En-
module structure on

∫
U
A allows us to seeA|U as a stratified factorization algebra on

U with a closed strata given by a point ∗i (or a sub-disk); different choices of points
leads to canonically equivalent A|U -modules structures. We can choose a collar ci
in the neighborhood of the boundary (in D) of each Ui such that ci ∼= Sn−1× (0, ε)
for a homeomorphism induced by a homeomorphism Ui ∼= Dn; for instance we just

30where the left hand side is endowed with the En-algebra structure given by Theorem 6.8
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choose ci to be the complement of the point ∗i ∈ Ui (or a suitable sub-disk). This
way we get a connected open set

U∂ := D \
( r∐
i=1

(Ui − coli)
)

(the notation ∂ is meant to suggest that U∂ is the boundary of
∐
Ui in D; below

we will sometimes refer to it using this terminology). By definition, the Ui’s and
U∂ cover D, hence the factorization algebra A|D is obtained as the gluing of the
restricted factorizations algebras A|U1

, . . . ,A|Ur and A|U∂ .

Let be given maps gi :
∫
|Di A →

∫
|Di B of (left) A(Ui)-modules (i = 1 . . . r)

and also denotes gi : A|Di → B|Di the induced maps of (stratified) factorization
algebras. We also denote f∂ : A|U∂ → B|U∂ the restriction of f : A → B to U∂ .

Lemma 6.13. The family (g1, . . . , gr, f∂) of maps of factorization algebras glues
together to define a map

ρU1,...,Ur,D (g1, . . . , gr) ∈ RHom(A|D,B|D)

which is independent in k-Mod∞ of the choices (of collars) involved. Further, on
global sections, the induced map

∫
D
ρU1,...,Ur,D (g1, . . . , gr) :

∫
D
A→

∫
D
B is a map

of A(D)-En-modules. The induced map

(41) ρU1,...,Ur,D : RHomEnA

(
A,B

)(
U1

)
⊗ · · · ⊗RHomEnA

(
A,B

)(
Ur
)

−→ RHomEnA

(
A,B

)(
D
)

is the map given by the factorization algebra structure of Theorem 6.8.

Proof of Lemma 6.13. Note that all triples intersections in the family (U1, . . . , Ur, U∂)
are empty and that the only non-empty intersections are those of the form Ui∩U∂ =
coli ∼= Sn−1 × (0, ε). Hence, by definition of the gluing of factorization alge-
bras, we only have to check that the maps gi and f∂ are equivalent on A|(Ui∩U∂).

By assumption, the map gi :
∫
Ui
A →

∫
Ui
B is a map of A(Ui)-modules. Then

Proposition 5.8 (and Theorem 2.20) implies that the map of factorization algebras
gi : A|coli → B|coli is equivalent to the map induced by the A(Ui)-module structure

of
∫
Ui
B ∼= B. Since this module structure is given by f : A → B, it follows that(

gi
)
|coli

is equivalent to
(
f∂
)
|coli

. Hence the collection (g1, . . . , gr, f∂) assembles

to give an object in RHom(A|D,B|D). Further, we also just proved, that for any
choice of collar col′i in the disk Ui, the value of gi on Acol′i is given by f . It is thus
independent of the choice of the collar. In order to check it induces the same map
as Theorem 6.8, it is sufficient to check that the underlying maps of factorizations
algebras agrees. For this, it is further sufficient to do it on the cover of D obtained
by taking only convex open subsets which are required to belong to either one of
the Ui or to U∂ , for which the result follows by definition. �

6.2.4. The parametrized factorization algebra structure on Hochschild cohomology
of En-algebras. The En-algebra structure given in Theorem 6.8 is given by a fac-
torization algebra structure (by Theorem 2.29). In view of Proposition 2.25, it can
also be obtained as a parametrized locally constant factorization algebra (see Defi-
nition 2.24), that is a locally constant algebra over the operad N(Disk(M)′). This
structure is rather easy to describe as we now explain.
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Let f : A → B be an En-algebra map. As before we may assume that the map
is induced by a map f : A → B of locally constant factorization algebras over Rn.
From Definition 2.24, we see that we need to associate to any open embedding
φ : Rn → Rn a chain complex HHEn(A,B)(φ). We set

(42) HHEn(A,B)(φ) := RHomEnA(φ(Rn))(A,B)(U) ∼= RHomleft∫
∂U

A

(∫
U

A,

∫
U

B
)

where ∂U := φ
(
Rn \ D(0, 1)

)
is the image by φ of the complement of a closed

(bounded) Euclidean disk centered at 0. Note that any different choice of radius
yields canonically equivalent chain complexes since A, B are locally constant.

Now, we need to define structure maps associated to any open embedding h :∐r
i=1 Rn → Rn such that ψ ◦ h =

∐r
i=1 φi :

∐r
i=1 Rn →M . The structure map

ρhφ1,...,φr,ψ : HHEn(A,B)(φ1)⊗ · · · ⊗HHEn(A,B)(φr) −→ HHEn(A,B)(ψ)

is defined exactly in the same way as in Remark 6.12 and in particular Lemma 6.13.
Here, we can use the canonical collars given by the complement of a disk centered at
0 inside each disk Rn. Then, using this slight alternative definition of factorization
algebras, one proves (in a similar way) the obvious analogue of Theorem 6.8. A
proof similar to the one of Theorem 6.8 yields

Proposition 6.14. Let f : A→ B be a map of En-algebras31.

(1) The structure maps (41) ρhφ1,...,φr,ψ
make Uφ 7→ RHomEnA

(
A,B

)(
φ
)

a lo-
cally constant parametrized factorization algebra on Rn whose global section

are naturally equivalent to RHomEnA

(
A,B

)
.

(2) This parametrized factorisation algebra is equivalent to the one of Theo-
rem 6.8 under the equivalence of Proposition 2.25.

(3) the composition and tensor product of endomorphisms are maps of (locally
constant) parametrized factorization algebras.

6.2.5. The case of E∞-algebras again. If f : A→ B is a map of E∞-algebras, then
Theorem 6.8 and Proposition 6.2 give an En-algebra structure to CHSn(A,B). The
latter has also an En-algebra structure given by Theorem 4.12. The following result
shows that these two structures are the same.

Proposition 6.15. Let f : A → B be a map of E∞-algebra and let B be en-
dowed with the induced A-E∞-module structure. Then the natural equivalence
HHEn(A,B) ∼= CHSn(A,B) given by Proposition 6.2 is an equivalence of En-
algebras32.

Proof. The proof of Proposition 6.2 shows that we have equivalences

(43)

HHEn(A,B) ∼= RHomleft∫
Sn−1 A

(∫
Dn

A,B
)
∼= RHomleft

CHSn−1 (A)

(
CHDn(A), B

)
∼= HomEnCHDn (A)

(
CHDn(A), B

)
.

31which we may assume to be given by a map f : A → B of factorization algebras, see § 2.4
32where the left hand-side is the En-algebra given by Theorem 6.8 and the right hand side is

the En-algebra given by Theorem 4.12
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By Theorem 3.13, we have natural (in spaces and E∞-algebras) equivalences
∫
U
A ∼=

CHU (A) and, by the value on a point axiom in Definition 3.25, a canonical equiva-

lence CHU (B) ∼= B. We can thus define a rule U 7→ HomEnCHU (A)

(
CHU (A), B

)
and

structure maps (for U1, . . . , Ur pairwise disjoints convex opens included in a larger
bounded convex open D)

(44) ρU1,...,Ur,D : HomEnCHU1
(A)

(
CHU1(A), B

)
⊗ · · · ⊗HomEnCHUr (A)

(
CHUr (A), B

)
−→ HomEnCHD(A)

(
CHD(A), B

)
defined exactly as the structure maps (36) (in step 2, § 6.2.2) forRHomEnA (A,B)(U).
Then the proof of Theorem 6.8 applies mutatis mutandis to prove that U 7→
HomEnCHU (A)

(
CHU (A), B

)
is a locally constant factorization algebra on Dn and

further, that the equivalences

HomEnA(U)

(∫
U

A,

∫
U

B
)
∼= HomEnCHU (A)

(
CHU (A), B

)
(induced by Theorem 3.13) are equivalences of factorization algebras.

Now, for any collar ∂U ∼= Sn−1 × (0, ε) inside a disk U , we have natural equiva-
lences

HomEnCHU (A)

(
CHU (A), B

) ∼= RHomleft
CH∂U (A)

(
CHU (A), B

)
∼= RHomA

(
A,RHomleft

CH∂U (A)

(
CHU (A), B

))
∼= RHomA

(
CHU (A)

L
⊗

CH∂U (A)
A, B

)
∼= RHomA

(
CHU/∂U (A), B) ∼= CHU/∂U (A,B)

where the last equivalences are by the excision axiom (Definition 3.25) and definition
of Hochschild cochains. Recall from the proof of Proposition 6.2 that, for U =
Dn, the above equivalences and the equivalences (43) are precisely the natural
equivalence HHEn(A,B) ∼= CHSn(A,B) of Proposition 6.2. Hence, we are left to
prove Proposition 6.15 replacing HHEn(A,B) with CHSn(A,B) endowed with the
En-algebra structure given by the locally constant factorization algebra structure.

By functoriality of Hochschild chains, we have natural maps of E∞-algebras

(45)

r⊗
i=1

B ∼=
r⊗
i=1

CHUi(B) ∼= CH⋃r
i=1 Ui

(B)
(
⋃r
i=1 Ui↪→V )∗−→ CHV (B) ∼= B

Further, we have pinching maps D
pU1,...,Ur,D−→

∨r
i=1

(
Ui/∂Ui

)
obtained by col-

lapsing D \
(⋃r

i=1 Ui \∂Ui
)

to a point. By functoriality of Hochschild cochains, the
pinching maps yield a map

(46)

r⊗
i=1

CHUi(A) ∼= CH⋃r
i=1 Ui

(A)
(pU1,...,Ur,D

)∗−→ CH∨r
i=1

(
Ui/∂Ui

)(A).
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Using the last two maps, we get the composition

(47)

r⊗
i=1

RHomleft
CH∂Ui (A)

(
CHUi(A), B

)
−→ RHom⊗r

i=1 A

( r⊗
i=1

CHUi(A),

r⊗
i=1

B
)

−→ RHom⊗r
i=1 A

( r⊗
i=1

CHUi(A), B
) ∼= RHomA

(
CH∨r

i=1

(
Ui/∂Ui

)(A), B
)

−→ RHomA(CHV (A), B
)

where the last maps are respectively induced by the map (45), Lemma 4.2 and the
map (46). Using the homotopy invariance of Hochschild cochains and unfolding
the definition of ρU1,...,Ur,D, we find that the structure map (44) is transfered to

the above map (47) under the natural equivalences RHomleft
CH∂U (A)

(
CHU (A), B

) ∼=
CHU/∂U (A,B) (where U is any disk in Dn). Note that when the Ui are cubes in
Cn(r) and D is Dn, the composition of the map (47) with the equivalence( r⊗

i=1

CHSn(A,B)
)
∼=

r⊗
i=1

RHomleft
CHSn−1 (A,B)

(
CHDn(A), B

)
∼=

r⊗
i=1

RHomleft
CH∂Ui (A)

(
CHUi(A), B

)
is the pinching map (26) pinch∗Sd,r(c) :

(
CHSd(A,B)

)⊗r
−→ CHSd(A,B) (where

c is the cube associated to the Ui’s). Now, thanks to Theorem 4.12 and the defi-

nition of the factorization algebra structure on U 7→ HomEnCHU (A)

(
CHU (A), B

)
, we

can apply Lemma 6.16 below which implies that the two En-algebra structure on
CHSn(A,B) (given by Theorem 4.12 and the one introduced in this proof by the
structures maps (47)) are equivalent. �

Lemma 6.16. Let A ∈ k-Mod∞ and assume that

(1) A has an Cn-algebra structure, i.e., an En-algebra structure given by an
action of the chains little n-dimensional cube operad.

(2) There is a locally constant factorization algebra A on Rn (identified with the

open unit cube) together with an equivalence ϕ : A(Rn)
'→ A (in k-Mod∞);

which thus induces another En-algebra structure on A.

Assume further that the two structures given by (1) and (2) are compatible in the
following sense: for any configuration of cubes c ∈ Cn(r), the following diagram

(48) A⊗r
µc // A

A(c1)⊗ · · · ⊗ A(cr)

⊗r
i=1 ϕ◦ρci,Rn

OO

ρc1,...,cr,Rn // A(Rn) ,

ϕ

OO

(where we denote c1, . . . , cr the configuration of cubes defined by c = (c1, . . . , cr),
µc is the structure map given by the operadic structure and ρU1,...,Ur,V the structure
maps of the factorization algebra structure), is commutative in k-Mod∞.

Then the two En-algebras structures on A defined by (1) and (2) are equivalent
(in En-Alg).
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A similar statement holds with En-coalgebra structure instead of En-algebra
structures.

Proof. The statement for coalgebra follows mutatis mutandis from the one for al-
gebras; we only prove the last one.

The En-algebra structure defined by (1), that is by the action of the little n-
dimensional cube operad on A yields a locally factorization algebra A′ on Rn which
is equivalent to the En-structure given by (1) and satisfies A′(U) ∼=

∫
U
A (see The-

orem 2.29 and Theorem 2.20). Thus we only have to prove that A′ is equivalent
to A as a factorization algebra on (0, 1)n. Let us analyze further the construc-
tion of A′. The Cn-action on A gives a structure of E⊗Rn-algebra to A, where

E⊗Rn is the ∞-operad introduced by Lurie in [L-HA, Section 5.2], that is, the op-
erad whose algebras are precisely those given by Definition 2.4. The canonical
map of operad Cn → E⊗Rn is an equivalence by the results of Lurie [L-HA, Ex-
ample 5.2.4.3]. By [L-HA, Theorem 5.2.4.9] (also see § 2.4), the ∞-operad map
N(Disk(Rn))⊗ → E⊗Rn now yields the locally constant factorization algebra struc-
ture on Rn (denoted A′ above). Let R be the factorizing basis of (0, 1)n given

by the open rectangles and denote PFaclcR the category of locally constant R-
prefactorization algebras (Definition 2.27). Then, similarly, we have an equivalence

Cn-Alg
'→ PFaclcR which fits into the following commutative diagram:

(49) Cn-Alg
' // PFaclcR

E⊗Rn -Alg

'

OO

' // Faclc(0,1)n

?�

OO

where the right arrow is given by restrictions to the opens belonging to R. In
particular, we have natural (with respect to the factorization algebra structure)

equivalences A′(c) '→ A for any open any little rectangle c ∈ R.

Since the family of open cubes inside Rn forms a factorization basis of Rn, it is
enough, by Proposition 2.28, to check that the factorization algebra structures on
A′ and A are equivalent on the bais R of open rectangles. From diagram 49, we
see that this is precisely the compatibility condition (48) of the Lemma. The result
follows. �

Remark 6.17. It is possible, though more technically involved, to use directly,

in the spirit of Section 4.2, the little cube operad Cn to make RHomEn
(
A,B

)
an

En-algebra. We now sketch how to do this, leaving to the interested reader the
task to fill in the many details.

We let again A, B be the factorization algebras corresponding to A, B. Recall

that we have factorizations algebras A⊗k, B⊗k on
∐k
i=1D

n and similarly for B. Let
c ∈ Cn(r) be a framed embedding

∐r
i=1D

n ↪→ Dn. Then the little cube c induces
a natural (in A and c) equivalence A|c−1(Dn)

∼= A⊗r. We can define a map

compr(f, c) : RHomEn
(
A,B

)⊗r
−→ RHomEn

(
A,B

)
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similarly to the definition of the structure maps (41). Indeed, we first use c to see
the factorization algebras A and B on Dn as obtained by gluing together r + 1-
factorization algebras on Dn. The image c(

∐r
i=1D

n) has r-open connected compo-
nents, denoted D1, . . . , Dr. Choosing small collars col1, . . . colr in the neighborhood
of each Dn ⊂

∐r
i=1D

n yield a connected open set U∂ := Dn \ c
(∐r

i=1(Dn− coli)
)
.

Since c is an embedding, it induces an identification A ∼= A|Di for each i = 1 . . . r.

Thus from any family of maps g1, . . . , gr ∈ RHomEn
(
A,B

)
, we get induced maps

of factorization algebras gi : A|Di → B|Di . Further, we also have, by restriction of
f to the open set Uc, an induced map fc : A|Uc → B|Uc .

The argument of the proof of Lemma 6.13 apply to show

Lemma 6.18. The family (g1, . . . , gr, fc) of maps of factorization algebras glues
together to define a map of factorization algebras

compr(f, c) (g1, . . . , gr) ∈ Hom(A,B)

Further, on global sections, the induced map compr(f, c) (g1, . . . , gr)
(
Dn
)

: A→ B
is a map of A-En-module.

It follows (from the above Lemma 6.13) that we have a well-defined map (g1, . . . , gr) 7→
compr(f, c)(g1, . . . , gr)(D

n), simply denoted by

(50) compr(f, c) : RHomEn
(
A,B

)⊗r
−→ RHomEn

(
A,B

)
.

Recall that the set of A-En-modules homomorphisms is simplicially enriched.
Similarly, there are simplicial sets of maps of factorization algebras, see [CG].
Equivalently, we have topological spaces of such maps. Using the fact that the
factorization algebras A and B are locally constant, one can prove the following

Lemma 6.19. The map compr(f, c) : RHomEn
(
A,B

)⊗r
−→ RHomEn

(
A,B

)
depends continuously on c.

The above Lemma 6.19 allows us to consider the maps compr(f, c) in families
over the operad of little cubes and thus one can let c runs through the operad Cn(r)
so that we get the first part of the following result.

Proposition 6.20. Let f : A→ B be a map of En-algebras.

(1) The maps compr(f, c) assembles to give a map

compr(f) : C∗
(
Cn(r)

)
⊗RHomEn

(
A,B

)⊗r
−→ RHomEn

(
A,B

)
in k-Mod∞.

(2) The maps compr(f) gives to RHomEn
(
A,B

)
a natural En-algebra struc-

ture.

The proof of the second assertion of this Proposition is essentially the same as
the ones of Theorem 6.8 and Theorem 4.12.

6.3. En-Hochschild cohomology as centralizers. We will now relate the nat-
ural En-algebra structure of RHomEnA (A,B) (for an En-algebra map f : A → B)
given in Section 6.2 with the centralizer z(f). The following definition is due to
Lurie [L-HA, Lu3] (and generalize the notion of center of a category due to Drin-
feld).
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Definition 6.21. The (derived) centralizer of an En-algebra map f : A → B
is the universal En-algebra z(f) endowed with a homomorphism of En-algebras
ez(f) : A⊗ z(f)→ B making the following diagram

(51) A⊗ z(f)
ez(f)

##
A

id⊗1z(f)

;;

f // B

commutative in En-Alg.

The existence of the derived centralizer z(f) of an En-algebra map f : A→ B is a
non-trivial Theorem of Lurie [L-HA, Lu3]. The universal property of the centralizer
implies that there are natural maps of En-algebras

(52) z(◦) : z(f)⊗ z(g) −→ z(g ◦ f)

see [L-HA, Lu3].
The En-algebra structure on the En-Hochschild cohomology given by Theo-

rem 6.8 gives an explicit description of the centralizer z(f) (as an En-algebra):

Proposition 6.22. Let f : A→ B be an En-algebra map and endow HHEn(A,B)
with the En-algebra structure given by Theorem 6.8.

Then the En-Hochschild cohomology HHEn(A,B) ∼= RHomEnA
(
A,B

)
is the cen-

tralizer z(f), i.e., there is a natural equivalence of En-algebras HHEn(A,B) ∼= z(f)
such that, for any En-algebra map g : B → C, the following diagram

RHomEnA
(
A,B

)
⊗RHomEnB

(
B,C

)
◦
��

∼=⊗∼= // z(f)⊗ z(g)

z(◦)
��

RHomEnA
(
A,C

) ∼= // z(g ◦ f)

commutes in En-Alg.

Remark 6.23. Note that in the proof of Proposition 6.22, we do not assume the
existence of centralizers, but actually prove that HHEn(A,B) satisfies the universal
property of centralizers. In particular the proof of Proposition 6.22 implies the
existence of centralizers of any map f : A→ B of En-algebras.

We first prove a lemma. Denote ev : A ⊗ RHomEnA
(
A,B

)
→ B the (derived)

evaluation map (a, f) 7→ f(a).

Lemma 6.24. The evaluation map ev : A⊗RHomEnA
(
A,B

)
→ B is an En-algebra

morphism. Further, the following diagram

A⊗RHomEnA
(
A,B

)
ev

''
A

id⊗1
77

f // B

is commutative in En-Alg.

Proof. There are canonical equivalences of En-algebras RHomEnk (k,A) ∼= A and

RHomEnk (k,B) ∼= B (see Example 6.11). Thus, the fact that ev is a map of En-
algebras follows from statement (3) in Theorem 6.8. Further, the same Theorem
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implies that the unit of RHomEnA
(
A,B

)
is f : A→ B. It follows that ev◦(id⊗1) = f

which proves the Lemma. �

Proof of Proposition 6.22. By Lemma 6.24, we already know that HH•En(A,B) ∼=
RHomEnA (A,B) fits into a commutative diagram similar to diagram (53) below.
We have to prove that for any En-algebra z, endowed with a En-algebra map
φ : A⊗ z→ B fitting in a commutative diagram

(53) A⊗ z

φ

""
A

id⊗1z

==

f // B ,

there exists an En-algebra map z → RHomEnA which makes A ⊗ z
φ−→ B factor

through A⊗RHomEnA
(
A,B

) ev−→ B.
Let θφ : z → RHom(A,B) be the map associated to φ : A ⊗ z → B under the

(derived) adjunction RHom(A⊗ z, B) ∼= RHom
(
z, RHom(A,B)

)
(in k-Mod∞).

We now prove that θφ takes values in RHomEnA (A,B). We use again the fac-
torization algebra characterization of En-algebras. Let A, B and Z be the locally
constant factorization algebras associated to A, B and z. For any open sub-disk
D ↪→ Dn, we get the induced map33

φ :
(
A⊗Z

)
(D) ∼=

∫
D

A⊗
∫
D

z

∫
D
φ

−→
∫
D

B ∼= B(D)

and its (derived) adjoint θφ : Z(D) −→ RHom(A(D),B(D)). We are left to check
that this last map is compatible with the factorization algebra structures (describing
the A-En-module structure of A and B). Let U0, U1, . . . , Ur be pairwise disjoints
open disks included in a bigger disk V , where we assume that U0 contains the base
point of Dn. Also we use the same notation

ρU0,...,Ur,V : F(U0)⊗ · · · ⊗ F(Ur) −→ F(V )

for the associated structure maps of any one of the factorization algebras F = A,
B or Z on Dn. Since φ : A ⊗ z → B is a map of En-algebras, for any ai ∈ A(Ui)
(i = 1 . . . r), x ∈ A(U0) and z ∈ z(U0), we have

φ
(
ρU0,...,Ur,V

(
x, a1, . . . , ar

)
⊗ρU0,V

(
z
))

=φ
(
ρU0,...,Ur,V

(
x⊗ z, a1 ⊗ 1z, . . . , ar ⊗ 1z

))
= ρU0,...,Ur,V

(
φ(x⊗ z), φ(a1 ⊗ 1z), . . .

. . . , φ(ar ⊗ 1z)
)

= ρU0,...,Ur,V

(
φ(x⊗ z), f(a1), . . . , f(ar)

)
where the last identity follows from the commutativity of diagram (53). Note that
the map z 7→ ρU0,V

(
z
)

is an equivalence (since Z is locally constant). Since the A-
En-module structure on B is given by f , the above string of equalities ensures that

33we make, for simplicity, an abuse of notation still denoting by φ the induced map and
similarly with θφ below
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θφ is a map from z to RHomEnA (A,B). In particular, the map θφ : z→ RHom(A,B)
factors as

z
θ̃φ−→ RHomEnA (A,B) ∼= RHomleft∫

Sn−1 A

(∫
Dn

A,

∫
Dn

B
)
↪→ RHom(A,B).

To finish the proof of Proposition 6.22, we need to check that θ̃φ : z→ RHomEnA (A,B)

is a map of En-algebras. Recall that there are equivalences z ∼= RHomEnk (k, z),
z ∼= k ∼= z of En-algebras (see Example 6.11). By definition of the (derived) adjunc-

tion, θ̃φ : z→ RHomEnA (A,B) factors as the composition

(54)

z ∼= k ⊗ z
1
RHom

En
A

(A,A)
⊗id

−→ RHomEnA (A,A)⊗ z ∼= RHomEnA (A,A)⊗RHomEnk (k, z)

−→ RHomEnA (A,A⊗ z)
φ∗−→ RHomEnA (A,B).

By Theorem 6.8.(2) and (4), the last two maps are an En-algebra Homomorphisms.

Thus the composition (54) is a composition of En-algebras maps hence θ̃φ : z →
RHomEnA (A,B) itself is a map of En-algebras.

Further, by definition of θφ, the identity

ev ◦
(
idA ⊗ θφ

)
= φ

holds. Hence we eventually get a commutative diagram

A
id⊗1z

!!

id⊗1
RHom

En
A

(A,B)

**

f

..

A⊗ z

φ

!!

id⊗θ̃φ // A⊗RHomEnA (A,B)

ev

ww
B

in En-Alg.

It remains to prove the uniqueness of the map z → RHomEnA (A,B) inducing

such a commutative diagram. Thus assume that α : z→ RHomEnA (A,B) is a map
of En-algebras such that the following diagram

(55) A
id⊗1z

!!

id⊗1
RHom

En
A

(A,B)

**

f

..

A⊗ z

φ

!!

id⊗α // A⊗RHomEnA (A,B)

ev

ww
B
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is commutative in En-Alg. Note that the composition

(56) RHomEnA (A,B) ∼= RHomEnk

(
k,RHomEnA (A,B)

)
1
RHom

En
A

(A,A)
⊗id

−→ RHomEnA (A,A)⊗
(
k,RHomEnA (A,B)

)
−→ RHomEnA

(
A,A⊗RHomEnA (A,B)

)
ev∗−→ RHomEnA (A,B)

is the identy map. From the commutativity of Diagram (55), we get the following
commutative diagram
(57)

z ∼= RHomEnk
(
k, z
) α∗ //

��

RHomEnA (A,B) ∼= RHomEnk
(
k,RHomEnA (A,B)

)
��

RHomEnA
(
A,A⊗ z

)
φ∗

,,

RHomEnA
(
A,A⊗RHomEnA (A,B)

)
ev∗

��
RHomEnA (A,B)

in En-Alg. The composition of the right vertical maps in Diagram (57) is the com-

position (56), hence is the identity, and the upper map is α : z→ RHomEnA (A,B).

It follows that the map α is equivalent to the map (54) hence to θ̃φ. This gives the
uniqueness statement and the Proposition will follow once we proved the diagram
depicted in Proposition 6.22 is commutative. The latter is an immediate conse-
quence of the universal property of the centralizers (and thus of HHEnA (A,B)) and
of Theorem 6.8.(3). �

Example 6.25 (En-Koszul duality). Assume B = k so that f : A→ k is an aug-
mentation. Then by Proposition 6.22 and [L-HA, Example 6.1.4.14] and [Lu-MP,
Remark 7.13] there is an equivalence of En-algebras

HHEn(A, k) ∼= RHom(Bar(n)(A), k)

where Bar(n)(A) is the En-coalgebra given by the iterated Bar construction on
A, that is, the (derived) Koszul dual of A. Thus Theorem 6.8 gives an explicit
description of the En-algebra structure on the dual of Bar(n)(A). See Section 8 for
a more detailed description.

Combining Proposition 6.22 and Proposition 6.15, we get

Corollary 6.26. let f : A → B be a map of E∞-algebras. Then the Hochschild
cochains CHSn(A,B) over the n-sphere (endowed with its En-algebra structure
given by Theorem 4.12) is the centralizer z(f) of f viewed as a map of En-algebras
(by restriction).

Remark 6.27. Assume f : A→ B and g : B → C are maps of CDGA’s. Then by
the above Corollary 6.26 or Proposition 6.15, there is a composition

(58) CHSn(A,B)⊗ CHSn(B,C)
◦−→ CHSn(A,C)
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(which is a map of En-algebras) induced by the natural equivalence CHSn(A,B) ∼=
RHomleft

CHSn−1 (A)(CHDn(A), B) and (derived) compositions of homomorphisms. In

the setting of CDGA’s, this composition can be represented in an easy way as
follows. Let I• be the standard simplicial model of the interval ([G1, GTZ]); its
boundary ∂In• is a simplicial model for Sn−1. Then the map (58) is represented by
the usual composition (of left dg-modules)

Homleft
CH∂In• (A)

(
CHIn• (A), CHIn•

(B)
)
⊗Homleft

CH∂In• (B)

(
CHIn•

(B), CHIn•
(C)
)

◦−→ Homleft
CH∂In• (A)

(
CHIn•

(A), CHIn•
(C)
)

since CHIn•
(A) is a (semi-)free CH∂In•

(A)-algebra.

6.4. The higher Deligne conjecture. In this section we deal with (some of) the
solutions of the higher Deligne conjecture. That is we specialized the results of the
previous sections 6 and 4.2 to the case A = B and f = id.

By Theorem 6.8 above, the composition of morphisms of A-En-modules

(59) RHomEnA (A,A)⊗RHomEnA (A,A)
◦−→ RHomEnA (A,A)

is a homomorphism of En-algebras (with unit given by the identity map id : A →
A). The composition of morphisms is further (homotopy) associative and unital

(with unit id); thus RHomEnA (A,A) is actually an E1-algebra in the ∞-category
En-Alg.

By the ∞-category version of Dunn Theorem [Du, L-HA, Lu3] or see Theo-
rem 2.30, there is an equivalence of (∞, 1)-categories E1−Alg

(
En−Alg

) ∼= En+1−
Alg. Thus the multiplication (59) lift the En-algebra structure of HH•En(A,A) ∼=
RHomEnA (A,A) to an En+1-algebra structure.

In particular we just proved the first part of the following result, which has
already been given by Francis [F1] (and Lurie [L-HA, Lu3]).

Theorem 6.28. (Higher Deligne Conjecture)

(1) Let A be an En-algebra. There is a natural En+1-algebra structure on
HH•En(A,A) with underlying En-algebra structure given by Theorem 6.834.

(2) Let now A be an E∞-algebra. Then there is a natural En+1-algebra struc-
ture on CHSn(A,A) whose underlying En-algebra structure is the one given
by Theorem 4.12. In particular, the underlying E1-algebra structure is given
by the standard cup-product (see Corollary 4.6 and Example 4.7).

(3) For A an E∞-algebra, the two En+1-structures given by statements (1) and
(2) are equivalent.

Proof. We have already proved the first claim. Note that the underlying En-algebra
structure of an En+1-algebra is induced by the pushforward along the canonical
projection Rn ×R→ Rn, see Theorem 2.30. By Proposition 6.2, CHSn(A,A) also
inherits a structure of En+1-algebra whose underlying En-algebra is the same as
the one given by Theorem 4.12 thanks to Proposition 6.15. This proves both claims
(2) and (3). �

34where we take B = A and f = id
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Example 6.29. In the case n = 1, Theorem 6.28 recovers the original Deligne con-
jecture asserting the existence of a natural E2-algebra structure on the Hochschild
cochains lifting the associative algebra structure induced by the cup-product. It can
be proved that this E2-algebra structure induces the usual Gerstenhaber algebra
structure (from [Ge]) on the Hochschild cohomology groups.

Remark 6.30. Francis [F1] has given a different solution to the higher Deligne con-
jecture. His solution is directly and explicitly related to the degree n Lie algebra
structure on HHEn(A,A). However, the underlying cup-product (i.e. E1-algebra
structure) is more mysterious. This is in contrast to the solution given by Theo-
rem 6.28. This latter solution is, by definition, the same as the one of Lurie [L-HA].
It would therefore be very interesting and useful to relate Francis’ construction to
ours. Note that the explicit knowledge of the cup-product is useful to us to relate
this construction to the higher string topology operations, see § 7.

6.5. Explicit computations via higher formality. For the remaining of this
section, we work over a characteristic zero field and we let A be a commutative
differential graded algebra. In that case, we can use the higher formality Theo-
rem [To, CW] mentioned first in [PTVV] to compute more explicitly the En+1-
algebra structure on the derived center HH•En(A,A). We will start by identifying
our En+1-algebra structure with the one obtained very recently by Toën [To].

6.5.1. Pn-algebras and Toën Brane operations. In characteristic zero, the operad
En is formal when n ≥ 2 ([LV]) so that one can choose35 an equivalence of ∞-
operads En → Pn where Pn is the (∞-operad associated to the) operad governing
(homotopy) Pn-algebras (in particular Pn ∼= H•(En) for n ≥ 2). More precisely, we
have the differential graded operad Pn which is the (cofibrant) minimal resolution
of the operad Pn ∼= H•(Pn) of (strict, differential graded) Pn-algebras. These
two operads yields (using the standard nerve functor from operads to ∞-operads)
equivalent ∞-operads (and dendroidal sets), which we still denote Pn.

By a Pn-algebra36 we mean a differential graded commutative unital algebra
(B, d, ·) equipped with a (homological) degree n−1 bracket which makes the iterated
suspension A[1− n] a differential graded Lie algebra. The bracket and product are
further require to satisfy the graded Leibniz identity [a·b, c] = ±a·[b, c]+±b·[a, c]. In
other words P2-algebras are the same as (differential graded) Gerstenhaber algebras.

In particular, if B is a Pn+1-algebra, then B[−n] is a differential graded Lie
algebra. By the above choice of formality maps En → Pn of operads, then for any
En+1-algebra H, H[−n] inherits an (homotopy) dg-Lie algebra structure as well.

Slightly after a first draft of our paper was written, Toën used the machinery of
∞-operad of configuration type to prove the following result.

Theorem 6.31 (Toën [To]). Let X be a derived stack and n ≥ 2. There is a
canonical equivalence of (homotopy) dg-Lie algebras

RΓ
(
X,SymOX

(
TX[n]

))
[−n] ∼= HH•En(OX,OX)[−n].

Here both sides are given a Lie algebra structure induced by a canonical Pn and
En-algebras structures constructed in [To, § 5].

35there are however many possible choices, for instance see [Ta3]
36which are sometimes called n-algebras [GeJo, G1] or en-algebras [Ta3, CW] in the literature
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We are only interested in theorem 6.31 in the case when X = RSpec(A) is affine,
given by a (differential graded) commutative algebra A. In that case, the tangent
complex TX is equivalent to RDer(A,A) the right derived functor of derivations
of A. Hence, theorem 6.31 provides a canonical equivalence of (homotopy) dg-Lie
algebras:

(60) SymA

(
RDer(A,A)[n]

)
[−n] ∼= HH•En(ORSpec(A),ORSpec(A))[−n].

In fact, Toën deduced the above equivalence (60) from an equivalence of objects in
E1-Alg(En-Alg) which is a consequence of the main Theorem of [To]. Note that
the left hand side SymA

(
RDer(A,A)[n]

)
of (60) is the Pn-branes cohomology of

RSpec(A) while the right hand side HH•En(ORSpec(A),ORSpec(A)) is its En-branes
cohomology.

It is essentially immediate from the definition37 that, as a cochain complex,
HH•En(ORSpec(A),ORSpec(A)) is equivalent to HH•En(A,A), the En-center of A (Def-
inition 6.1 and Corollary 6.26) . We prove below that the equivalence is actually an
equivalence of En+1-algebras between the right hand side of (60) and our solution
to Deligne conjecture from § 6.3.

To do so, for n ≥ 2, we first choose equivalences of ∞-operad Fn : En
'−→ Pn.

Denote O} P the tensor product of two ∞-operads O and P. It is an ∞-operad
governing O-algebras in P-algebras. If one uses the model given by dendroidal sets
for ∞-operads, the tensor product is represented by the (derived) tensor product
of dendroidal sets (which forms a symmetric monoidal model category) of [CiMo,
CiMo2, CiMo3].

Recall also, that, by Dunn Theorem 2.30 (see [L-HA]), we have an equivalence

Dn+1 : E1 } En
'−→ En+1 of ∞-operads. We sum up these two facts in the

Proposition 6.32. Let n ≥ 2. There are equivalences of ∞-operads

E1 } Pn E1 } En'
id}Fnoo

'
Dn+1 // En+1 '

Fn+1 // Pn+1

Here E1 } Pn (resp. E1 } En) are the ∞-operad governing E1-algebras in the
(symmetric monoidal ∞-)category of Pn-algebras (resp. En-algebras).

In particular, we thus get equivalences E1 } Pn ∼= Pn+1 (for n ≥ 2) fitting into a
commutative diagram of equivalences of ∞-operads:
(61)

E1 } · · ·} E1 } E2

'
��

' // · · ·

'

��

' // E1 } E1 } En−1

'
��

' // E1 } En
' //

'
��

En+1

'
��

E1 } · · ·} E1 } P2
' // . . .

' // E1 } E1 } Pn−1
' // E1 } Pn

' // Pn+1

where the vertical pointing down arrows are induced by the formality maps F〉 and
the horizontal upper arrows by iteration of Dunn Theorem.

We can identify the right hand side of (60) with the structure given by the
Deligne conjecture (Theorem 6.28):

Proposition 6.33. One has a canonical equivalence of E1 } En-algebras

HH•En(ORSpec(A),ORSpec(A)) ∼= CHSn(A,A)

37see [To, §5] or the proof of Proposition 6.33 below
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where the right hand side is given the structure given by Theorem 6.28 and the left
hand side is given the structure of [To, § 5].

Proof. Toën has proved in [To] (in particular Corollary 5.1 in loc. cit.) that the En-
branes cohomology HH•En(ORSpec(A),ORSpec(A)) of RSpec(A) is an E1}En-algebra.
It is given, by definition, by

RHom
D
(
Ln−1(RSpec(A))

)(ORSpec(A),ORSpec(A)

)
where Ln−1(RSpec(A)) is the iterated (derived) loop stack RMap(Sk−1,RSpec(A)).
By Corollary 3.15, we get that the derived category D

(
Ln−1
f (RSpec(A))

)
is equiv-

alent to CHSk−1(A)-LMod. Hence, we get an equivalence of E1-algebras (for the
structure given by composition of endomorphisms):

(62) RHom
D
(
Ln−1(RSpec(A))

)(ORSpec(A),ORSpec(A)

)
∼= RHomleft

CHSn−1 (A)(A,A).

Toën has proved that the left hand side has an En-algebra structure given by a nat-

ural map of ∞-operads
(
Cn(r)

)
r
→ End

(
D
(
Ln−1(RSpec(A))

))
. Under the above

equivalence, this action of the little cubes is seen to be transfered to the map (47)
(for any family of little cubes Ui inside the unit cube D) defined in the proof of
Proposition 6.15. The proof of this Proposition also shows that this En-algebra

structure on RHomleft
CHSn−1 (A)(A,A) is equivalent to the one on CHSn(A,A) given

by Theorem 4.12 in a natural way. It follows that the equivalence (62) is an equiv-
alence of E1 } En-algebras. �

Corollary 6.34. For any choice of formality equivalence as in Proposition 6.33,
one has canonical equivalences of En+1-algebras (and homotopy Pn+1-algebras as
well)

HH•En(ORSpec(A),ORSpec(A)) ∼= SymA

(
RDer(A,A)[n]

) ∼= CHSn(A,A) ∼= HH•En(A,A)

where the two right hand sides are given the structure given by Theorem 6.28 and
the left hand sides are given the structure of [To, § 5].

Proof. The choice of formality provides an equivalence (id}Fn)∗ : E1}Pn-Alg
'−→

E1 } En-Alg. Note that that the map of (∞-)operad En
Fn→ Pn → Comm is the

canonical one. Further there is a canonical equivalence E1 ⊗ Comm
'−→ Comm

and the following diagram of ∞-operads

E1 } Pn

''

E1 } En

��

'
id}Fnoo

'
Dn+1 // En+1

��

'
Fn+1 // Pn+1

zz
E1 ⊗ Comm

' // Comm

is commutative.
Since A is a CDGA seen as both a Pn-algebra with trivial bracket and an En-

algebra through the above maps Pn → Comm and En → Comm, it follows that
the space of Pn-branes38 and the space of En-branes39 of A (in the sense of [To])
are equivalent as E1 } En-algebras.

38which is SymA

(
RDer(A,A)[n]

)
39which is HH•En(ORSpec(A),ORSpec(A))
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Now, in view of Proposition 6.32 and Theorem 6.28, the result is a corollary of
Proposition 6.33. �

6.5.2. Higher formality and Tamarkin homotopy Pn+1-structure. By Corollary 6.34,
SymA

(
RDer(A,A)[n]

)
inherits an homotopy Pn+1-algebra structure induced by its

interpration (due to [To]) as Pn-branes cohomology.
There is also a canonical (strict) Pn+1-algebra structure on SymA

(
RDer(A,A)[n]

)
.

Indeed, there is a Lie algebra structure on SymA

(
RDer(A,A)[n]

)
[−n] given by the

Schouten bracket. More precisely, RDer(A,A) has a canonical differential graded
Lie algebra structure40 such that the canonical map Der(A,A) → RDer(A,A) is a
map of (dg-)Lie algebras.

Then, SymA

(
RDer(A,A)[n]

)
is made into a Pn+1-algebra whose underlying

CDGA structure is given by the (graded) symmetric algebra construction on the
(dg-) A-module RDer(A,A)[n]. There is a unique extension of the Lie bracket on
(RDer(A,A)[n])[−n] = RDer(A,A)[n] satisfying the Leibniz rule, which defines the
Pn+1-algebra structure. This (strict) Pn+1-structure induces canonically a Pn+1-
structure (i.e. an homotopy Pn+1-structure) on SymA

(
RDer(A,A)[n]

)
and thus,

given any choice of a formality map, an En+1-algebra structure as well.

Associated to any Pn-algebra V , one can define its cohomology complexHH•Pn(V, V )
which by a result of Tamarkin [Ta2] has a canonical homotopy Pn+1-algebra struc-
ture.

Calaque and Willwacher have recently proved the following higher formality
relating the Pn+1-structure of SymA

(
RDer(A,A)[n]

)
and the Pn+1-structure of

HH•Pn(A,A) for a CDGA A, seen as a Pn-algebra with trivial bracket.

Theorem 6.35 (Calaque Willwacher [CW]). Let A be a differential graded com-
mutative algebra over a characteristic zero field. There is a canonical equivalence
of Pn+1-algebras:

(63) SymA

(
RDer(A,A)[n]

) ∼= HH•Pn(A,A)

where the right hand side is endowed with the (homotopy) Pn+1-structure con-
structed by Tamarkin in [Ta2].

The left hand side of (63) has a very explicit Pn+1-structure. The same com-
plex has another homotopy Pn+1-structure given by Corollary 6.34, that is, by our
solution to the higher Deligne conjecture for n ≥ 2. In order to prove that these
two structures are actually the same, now, we only need to check that Tamarkin
structure on HH•Pn(A,A) is equivalent to the one given by the center (and thus
Toen’s one as well).

The cochain complex HH•Pn(A,A) is defined in [Ta2, §2] as follows. We denote
P∨n(A) the (coproartinian) cofree Pn-coalgebra on A[−n] equipped with the differ-
ential ∂P∨n(A) corresponding to the (homotopy) Pn-algebra structure of A (this is a
coderivation of P∨n(A)). Let coDer(P∨n(A),P∨n(A)) be the vector space of coderiva-
tions of P∨n(A). Then the cochain complex HH•Pn(A,A) is coDer(P∨n(A),P∨n(A))
equipped with the differential [∂P∨n(A),−] obtained as the bracket of a coderivation
with ∂P∨n(A).

40given by the standard Lie algebra structure on the derivations Der(PA, PA) where PA → A
is a resolution of A by semi-free CDGAs
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Lemma 6.36. Let A be a differential graded commutative algebra over a charac-
teristic zero field. There is an natural equivalence of Pn+1-algebras

HH•Pn(A,A) ∼= CHSn(A,A)

where the right hand side is endowed with the structure given by Theorem 6.28 and
the left hand side is endowed with the one constructed by Tamarkin in [Ta2].

Proof. Since P∨n(A) is a coproartinian cofree coalgebra, there is an isomorphism
coDer(P∨n(A),P∨n(A)) ∼= Hom(P∨n(A), A[−n]) from which one deduced an isomor-
phism of cochain complexes HH•Pn(A,A) ∼= Hom(P∨n(A), A)[−n] where the right
hand side is endowed with the inner differential of P∨n(A) twisted by the canonical
map P∨n(A) → A[−n], see [Ta2, §4]. Further, in loc. cit., Tamarkin proved that

Hom(P∨n(A), A)[−n] is an homotopy Pn-algebra so that P∨n
(
Hom(P∨n(A), A)[−n]

)
is a n-bialgebra in the sense of [Ta2, §4], that is an E1-algebra in the category of

homotopy Pn-algebras. The latter chain complex is also denoted HomId(A,A) in
[Ta2, §3].

More generally, Tamarkin proved that, associated to any Pn-algebra morphism
φ : A → B, one obtains a similar way an homotopy Pn-algebra structure on
Hom(P∨n(A), B)[−n], with underlying differential given by the inner differential
of P∨n(A) and B and twisted by φ. This structure is equivalent to a differential

on the cofree coalgebra P∨n
(
Hom(P∨n(A), B)[−n]

)
which corepresents the canonical

functor FφA,B : d − coart0 → Sets of moduli problems for Pn-algebras, see [Ta2,

§2 and 3]. It is also denoted Homφ(A,B) in loc. cit. and its universal property
induces an associative map of homotopy Pn-algebras

Homφ(A,B)⊗Homψ(B,C) −→ Homψ◦φ(A,C)

which precisely gives the aforementionned n-bialgebra structure of HomId(A,A).
The (homotopy) Pn+1-structure on HH•Pn(A,A) is canonically induced by the

n-bialgebra structure on HomId(A,A), see [Ta2, Corollary 4.5 and §5], [CW] and
the fact it corepresents the functor F idA,A.

Hence in order to prove the lemma we now need to prove that, for any map
f : A → B between CDGAs, CHSn(A,B) is isomorphic to Homφ(A,B) as an
homotopy Pn-algebra. Since both functors are functorial with respect to CDGA
maps, we can further assume that A and B are free graded commutative as algebras.
That is A = (Sym(V ), d) and B = (Sym(W ), b).

By definition, as a coalgebra P∨n(A) = Sym
(
CoLie(A[−1])[1 − n]

)
where CoLie

is the free Lie coalgebra functor and Sym is endowed with the cofree coproartinian
cocommutative cobracket. Note that CoLie(A[−1]) is simply the underlying vector
space of the Harrison chain complex of A (see [Ta, GiHa, L]). Since A is seen as
a Pn-algebra with trivial bracket, the differential ∂P∨n(A) boils down to the usual
Hochschild/Harisson complex differential. Hence, one has an isomorphism of com-
plexes

Homφ(A,B) = Hom(P∨n(A), B)[−n] ∼= HomA

(
SymA

(
Harr∗(A,A)[1−n]

)
, B
)

[−n]

where the right hand side is endowed with the tensor product of Harrison differen-
tials on A and consists of A-linear maps; here B is seen as an A-module through
the map φ : A → B and the A-module structure on Harr∗(A,A) is given by the
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tensor product A ⊗ CoLie(A[−1]). The proof is the same as the one in the case
φ = Id in [Ta, GiHa].

We recall that the Harrison chain complex Harr∗(A,A) is a sub-complex of the
Hochschild chain complex of A: it is precisely the weight 1 part of the Hodge
decomposition of the Hochschild complex of the differential graded commutative
algebra A, see [L, GiHa]. Its homology is equal to the André-Quillen homology
since we are in characteristic 0. Hence, since A = (Sym(V ), d), by the Hochschild-
Kostant-Rosenberg Theorem, the Harrison chain complex is quasi-isomorphic to
Ω1(A) = Sym(V )⊗Sym(V [−1]) where the differential is induced by the one on S(V )
and d(v[−1]) = −s(d(v)) where s is the unique derivation extending v 7→ v[−1] for
v ∈ V (cf. [L, § 5]).

It follows that we have a quasi-isomorphism of Pn-algebras

HomA

(
Sym(V ⊕ V [−n]), B

) '−→ Hom(P∨n(A), B)[−n] = Homφ(A,B)

given by the convolution product on the left hand sideHomA

(
Sym(V⊕V [−n]), B

) ∼=
Hom(Sym(V [−n]), B) where Sym(V [−n]) is seen as a Pn-coalgebra with trivial
cobracket and its cofree cocommutative structure. Now the result follows from
Lemma 4.17. �

Combining the previous statements, we get:

Corollary 6.37. Let A be a differential graded commutative algebra over a char-
acteristic zero field. For n ≥ i ≥ 2, choose formality equivalences of ∞-operads

Fi : Ei
'→ Pi. There is a canonical equivalence of En+1-algebras (and thus of

Pn+1-algebras):

(64) SymA

(
RDer(A,A)[n]

) ∼= HH•En(A,A)

where the right hand side is induced by the En+1-algebra structure given by the
Deligne conjecture (Theorem 6.28) and the left hand side is given the Schouten
structure, with differential induced by the one in A.

Proof. By Theorem 6.35 we are left to prove that Tamarkin Pn+1-structure on
HH•Pn(A,A) is equivalent to the (homotopy) Pn+1-structure on HH•En(A,A) ∼=
CHSn(A,A) provided by Theorem 6.31. This is precisely the content of Lemma 6.36.

�

Remark 6.38. Corollary 6.37 and Corollary 6.34 implies in particular that the
Pn-cohomology HH•Pn(A,A) of Tamarkin is equivalent as an E1 } Pn-algebra to
the Pn-branes cohomology of Toën.

6.5.3. Explicit computations using higher formality. Now we assume A = (S(V ), d)
is a Sullivan algebra, that is, as an algebra, it is the free graded commutative algebra
on a graded vector space V and it is also equipped with a differential d. In that case
the canonical map Der(A,A)→ RDer(A,A) is an equivalence of (dg-) Lie algebras.
Hence, by Corollary 6.37 we have:

Corollary 6.39. Let A = (S(V ), d) be a Sullivan algebra. Under the assumptions
of Corollary 6.37, we have a canonical equivalence of En+1-algebras (and thus Pn+1-
algebras as well):

(65) SymA

(
Der(A,A)[n]

) ∼= HH•En(A,A).
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Here the right hand side is has the En+1-algebra structure given by the Deligne
conjecture (Theorem 6.28) and the left hand side is endowed with the structure
corresponding to the Schouten algebra structure.

The main interest of Corollary 6.39 for us, is that the left hand side has a totally
explicit and elementary strict Pn+1-algebra structure. It thus gives a large class of
examples of explicit computations of the En+1-structure of centers of commutative
algebras (viewed as En-algebras).

In the next three examples, we calculate the Pn+1 structures of the left hand
side of equation (65) for the cases of the Sullivan models of an odd sphere, an even
sphere, and for the complex projective space.

Example 6.40 (Pn+1-structure (65) for the odd sphere S2k+1). We compute the
Pn+1-structure of (65) for the Sullivan algebra A of the (2k+1)-sphere. In this case,
we consider the Sullivan algebra A = (S(V ), d) given by the free algebra generated
by x in degree |x| = 2k+ 1 with trivial differential d = 0. Since x is in odd degree,
we have that x2 = 0, so that A = span{1, x} with the trivial algebra structure.
Now note, that a (graded) derivation of A is uniquely determined by its value on
the generator x, and that any derivation maps 1 to 0. We have essentially the two
derivations of A, α and β, given by

α(1) = 0, α(x) = 1, and β(1) = 0, β(x) = x.

Note that β = x.α, displaying Der(A,A) as a module over A. Furthermore, the
Lie-bracket is calculated as the commutator,

(66) [α, β] = α, and [α, α] = [β, β] = 0.

This induces the bracket of Der(A,A)[n] = span{α, β} after a shift by n, where
α and β now have degrees |α| = n − (2k + 1) and |β| = n. Using this, we next
calculate the Pn+1-structure on

SymA(Der(A,A)[n]) = A⊕Der(A,A)[n]

⊕
(
Der(A,A)[n]�A Der(A,A)[n]

)
⊕ . . .

Here we denote the algebra structure on SymA(Der(A,A)[n]) by “�” or “�A” to in-
dicate linearity overA. Since β = x.α, note that any element of SymA(Der(A,A)[n])
is a sum of elements of the form a.α�p = a.α�A · · · �A α for some a ∈ A and α is
as above. The differential on SymA(Der(A,A)[n]) is zero, since d = 0. Recall the
usual Poisson relation and anti-symmetry for the bracket in a Pn+1-algebra, e.g.
from [SW, page 220],

[f � g, h] = f � [g, h] + (−1)|g|(|h|+n)[f, h]� g(67)

[f, g � h] = [f, g]� h+ (−1)|g|(|f |+n)g � [f, h],(68)

[f, g] = −(−1)(|f |+n)(|g|+n)[g, f ],(69)

for f, g, h ∈ SymA(Der(A,A)[n]), as well as the Schouten identities,

[ρ, a] = ρ(a) for ρ ∈ Der(A,A)[n], and a ∈ A,(70)

[a, b] = 0 for a, b ∈ A,(71)

which are used in defining the bracket on SymA(Der(A,A)[n]) together with (66).
(Note that this gives indeed a well-defined bracket on SymA(Der(A,A)[n]) due to
the commutator of derivations giving the consistency relation [ρ, a.λ] = ρ ◦ (aλ)−
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(−1)|ρ|(|a|+|λ|)(aλ) ◦ ρ = ρ(a)λ + (−1)|ρ|·|a|a[ρ, λ] for a ∈ A and ρ, λ ∈ Der(A,A)
before shifting by n.)

In the case when n is odd, the degree |α| = n− (2k + 1) is even, so that for any
a, b ∈ A, and p, q ∈ N0,

[a.α�p, b.α�q] = a[α�p, bα�q] + [a, bα�q]� α�p

= a[α�p, b]� α�q + (−1)|b|ab [α�p, α�q︸ ︷︷ ︸
=0

]

+ [a, b]︸︷︷︸
=0

α�p+q + (−1)|b|(|a|+n)b [a, α�q]︸ ︷︷ ︸
=−(−1)|a|+n[α�q,a]

�α�p

=
(
p · a · α(b)− (−1)(|b|+1)(|a|+1)q · α(a) · b

)
α�(p+q−1)

Thus, we obtain the following brackets for α�p and xα�p,

[α�p, α�q] = 0,

[α�p, xα�q] = −[xα�q, α�p] = p · α�(p+q−1),

[xα�p, xα�q] = (p− q) · xα�(p+q−1).

In the case where n is even, the degree of |α| = n − (2k + 1) is odd, so that
α � α = 0 in SymA(Der(A,A)[n]). Thus, SymA(Der(A,A)[n]) = A⊕ Der(A,A)[n]
with n-bracket given by (71), (70), and (66),

[x, x] = [α, α] = [xα, xα] = 0, [α, x] = 1, [α, xα] = α, [xα, x] = xα(x) = x.

We note that the above example is consistent with the calculation of the sphere
product, see Remark 7.20 below. We next consider the Sullivan algebra of the even
sphere.

Example 6.41 (Pn+1-structure (65) for the even sphere S2k). For A = (S(V ), d)
the Sullivan algebra of the even 2k-sphere, we calculate the left hand side of (65).
More precisely, let A be the free algebra generated by x and y, where |x| = 2k
and |y| = 4k − 1. Since y is an odd element, it is y2 = 0. The differential d is
given by d(x) = 0 and d(y) = x2. Any (graded) derivation of A is determined by
its action on the generators x and y. For ` = 0, 1, 2, . . . , we can define derivations
α`, β`, γ`, δ` : A→ A of A whose actions on the generators are as follows.

α`(x) = x`, α`(y) = 0,(72)

β`(x) = x`y, β`(y) = 0,(73)

γ`(x) = 0, γ`(y) = x`,(74)

δ`(x) = 0, δ`(y) = x`y.(75)

The degrees of these derivations α`, β`, γ`, δ` ∈ Der(A,A)[n] (after the shift by n)
are

|α`| = 2k(`− 1) + n,

|β`| = 2k(`− 1) + (4k − 1) + n = 2k(`+ 1) + n− 1,

|γ`| = 2k`− (4k − 1) + n = 2k(`− 2) + n+ 1,

|δ`| = 2k`+ n.
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Note, that any derivation can be written as a linear combination of the derivations
α`, β`, γ`, and δ`. (In particular, d = γ2.) Furthermore,

(76) x.α` = α`+1, y.α` = β`, x.γ` = γ`+1, y.γ` = δ`,

showing that Der(A,A)[n] is freely generated by α0 and γ0 as an A-module. The
commutator in Der(A,A)[n] for α0 and γ0 is easily verified to vanish,

(77) [α0, α0] = [α0, γ0] = [γ0, γ0] = 0.

(However, this does not imply that the bracket vanishes identically, since the bracket
is not A-linear, but rather satisfies equations (67), (68), and (70). For example, it
is [α`, αm] = (m− `)α`+m−1, etc.) The differential d of A induces a differential D
on Der(A,A)[n] of degree +1 given by D(ρ) = [d, ρ] for which we obtain D(α`) =
−2γ`+1, D(β`) = 2δ`+1 + α`+2, D(γ`) = 0, D(δ`) = γ`+2.

Since Der(A,A)[n] is generated by α0 and γ0 as an A-module, we see that any
element of

SymA(Der(A,A)[n]) = A⊕Der(A,A)[n]⊕
(
Der(A,A)[n]�A Der(A,A)[n]

)
⊕ . . .

can be written as a sum of terms of the form a.α�p0 � γ
�q
0 for a ∈ A and p, q ∈ N0.

We thus may obtain a differential D on SymA(Der(A,A)[n]) by taking

D(x) = 0, D(y) = x2, D(α0) = −2γ1 = −2xγ0, D(γ0) = 0,

and extending this as a graded derivation (with respect to �).

Note that [α�p0 � γ
�q
0 , α�r0 � γ

�s
0 ] = 0 by (67) and (68) and (77). In general, we

have (with |α0| ≡ n(mod 2) and |γ0| ≡ n+ 1(mod 2) ):

(78) [a.α�p0 � γ�q0 , b.α�r0 � γ
�s
0 ]

= a[α�p0 � γ�q0 , b.α�r0 � γ
�s
0 ] + (−1)ε1 [a, b.α�r0 � γ

�s
0 ]� α�p0 � γ�q0

= a[α�p0 � γ�q0 , b]� α�r0 � γ
�s
0 + (−1)ε1+ε2b[a, α�r0 � γ

�s
0 ]� α�p0 � γ�q0

= a[α�p0 � γ�q0 , b]� α�r0 � γ
�s
0 − (−1)ε1+ε2+ε3b[α�r0 � γ

�s
0 , a]� α�p0 � γ�q0 ,

where we used (67) in the first equality, (68) with [α�p0 �γ
�q
0 , α�r0 �γ

�s
0 ] = [a, b] = 0

in the second equality, and (69) in the third equality. The signs are given as follows,

ε1 = (pn+ q(n+ 1))(|b|+ rn+ s(n+ 1) + n),

ε2 = |b|(|a|+ n),

ε3 = (|a|+ n)(rn+ s(n+ 1) + n),

so that ε1 + ε2 + ε3 = (pn+ q(n+ 1) + |a|+ n)(rn+ s(n+ 1) + |b|+ n).

The right hand side of (78) may be evaluated further by evaluating [α�p0 � γ�q0 , b]
and [α�r0 � γ

�s
0 , a] using equations (67) and (70).

To be more concrete, we now restrict to the case n being even. In this case α0

is an even element while γ0 is an odd element implying that γ0 � γ0 = 0, so that
elements in SymA(Der(A,A)[n]) are either of the form a.α�p0 or a.α�p0 �γ0 for some
a ∈ A. We obtain

[α�p0 , xq] = pqxq−1α
�(p−1)
0 , [α�p0 � γ0, x

q] = pqxq−1α
�(p−1)
0 � γ0,

[α�p0 , xqy] = pqxq−1yα
�(p−1)
0 , [α�p0 � γ0, x

qy] = xqα�p0 − pqxq−1yα
�(p−1)
0 � γ0.
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This, together with (78) gives the following n-brackets:

(79)


[xrα�p0 , xsα�q0 ] = (ps− qr)xr+s−1α

�(p+q−1)
0 ,

[xryα�p0 , xsyα�q0 ] = 0,

[xrα�p0 � γ0, x
sα�q0 � γ0] = 0,

[xryα�p0 � γ0, x
syα�q0 � γ0] = 0,

and
(80)

[xrα�p0 , xsyα�q0 ] = (ps− qr)xr+s−1yα
�(p+q−1)
0 ,

[xrα�p0 , xsα�q0 � γ0] = (ps− qr)xr+s−1α
�(p+q−1)
0 � γ0,

[xrα�p0 , xsyα�q0 � γ0] = (ps− qr)xr+s−1yα
�(p+q−1)
0 � γ0,

[xryα�p0 , xsα�q0 � γ0] = (ps− qr)xr+s−1yα
�(p+q−1)
0 � γ0 + xr+sα

�(p+q)
0 ,

[xryα�p0 , xsyα�q0 � γ0] = −xr+syα�(p+q)
0 ,

[xrα�p0 � γ0, x
syα�q0 � γ0] = xr+sα

�(p+q)
0 � γ0.

Example 6.42 (Pn+1-structure (65) for the complex projective space CPm). For
the complex projective space CPm, the Sullivan model A = (S(V ), d) is generated
by x in degree |x| = 2 and y in degree |y| = 2m+ 1 with differential d(x) = 0 and
d(y) = xm+1. Note, that in this case we have again two generators x and y which
have the same parity as in the generators x and y in the last Example 6.41 for the
even sphere. Therefore, much of the arguments from Example 6.41 can be repeated
with only minor modifications. First, note that Der(A,A)[n] is generated by the
derivations α`, β`, γ`, δ` given by formulas (72)-(75), however with x and y in the
new degrees stated above. Thus, the degrees in the (shifted) space of derivations
Der(A,A)[n] are now

|α`| = 2(`− 1) + n,

|β`| = 2(`− 1) + (2m+ 1) + n = 2(`+m) + n− 1,

|γ`| = 2`− (2m+ 1) + n = 2(`−m) + n− 1,

|δ`| = 2`+ n.

The module relations (76) and the basic brackets (77) remain the same. How-
ever, the differential is now d = γm+1, so that D on Der(A,A) becomes D(ρ) =
[γm+1, ρ], which gives the relations D(α`) = −(m+1)γ`+m, D(β`) = (m+1)δ`+m+
α`+m+1, D(γ`) = 0, D(δ`) = γ`+m+1. Thus D is defined on SymA(Der(A,A)[n]) by
taking

D(x) = 0, D(y) = xm+1, D(α0) = −(m+ 1)γm = −(m+ 1)xmγ0, D(γ0) = 0,

and extending this to SymA(Der(A,A)[n]) as a graded derivation. Also, the con-
siderations concerning the n-bracket (such as equation (78) and, when n is even,
equations (79) and (80)) apply just as in Example 6.41 for the even sphere.

7. Integral chain models for higher string topology operations

We will use the E∞-Poincaré duality and Hochschild chains to give an algebraic
model for Brane Topology at the chain level, over an arbitrary coefficient ring.
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7.1. Brane operations for n-connected Poincaré duality space. Recall that
the n-dimensional free sphere space is denoted XSn = Map(Sn, X). It is the
space of continuous map from Sn to X endowed with the compact-open topology.
Sullivan and Voronov [CV, Section 5] have shown that there is a natural graded
commutative algebra structure, called the sphere product, on the shifted homology
H•+dim(M)(M

Sn) of an oriented closed manifold. For n = 1, this structure agrees
with the Chas-Sullivan loop product [CS]. This product was extended to all oriented
stacks in [BGNX]. For n = 2, the sphere product is a special case of the surface
product studied in [GTZ]. Further, it is claimed that H•+dim(M)(M

Sn) is an algebra

over the homology H∗(Efrn+1) of the framed little disk operad Efrn+1. Below we
will forget about the SO(n + 1)-action and deal with action of the En+1-operad
at the chain (and not homology) level and without specific assumptions on the
characteristic of the ground ring k.

We start by stating one of our main results:

Theorem 7.1. Let X be an n-connected Poincaré duality space. Then the shifted
chain complex C•+dim(X)(X

Sn) has a natural41 En+1-algebra structure which in-
duces the sphere product [CV, Section 5]

Hp

(
XSn

)
⊗Hq

(
XSn

)
→ Hp+q−dim(X)

(
XSn

)
in homology when X is an oriented closed manifold.

Proof. Remark 5.25 implies that the homology groups of X are finitely generated
so that the biduality homomorphism C∗(X) → (C∗(X))∨ is a quasi-isomorphism.
Since X is a Poincaré duality space, it then follows from Corollary 5.26 that the
Poincaré duality map (33)

χX : C∗(X)→ C∗(X)[dim(X)] ∼=
(
C∗(X)

)∨
[dim(X)]

is an equivalence of C∗(X)-E∞-Modules. Thus it yields an equivalence

(81) CHSn (C∗(X), C∗(X)) ∼= HomC∗(X) (CHSn(C∗(X)), C∗(X))

(χX)◦−−→ HomC∗(X)

(
CHSn(C∗(X)),

(
C∗(X)

)∨)
[dim(X)]

∼= CHSn
(
C∗(X)),

(
C∗(X)

)∨)
[dim(X)].

Since X is n-connected, by Corollary 3.36, there is an equivalence

(82) CHSn
(
C∗(X)),

(
C∗(X)

)∨) ∼= C∗
(
XSn

)
.

Combining the equivalences (81) and (82), we get a natural equivalence

(83) CHSn (C∗(X), C∗(X)) ∼= C∗
(
XSn

)
[dim(X)].

By Theorem 6.28, CHSn (C∗(X), C∗(X)) has a natural En+1-algebra structure,
whose underlying E1-algebra structure is given by the cup-product. Hence the
equivalence (83) yields a natural En+1-structure on C∗

(
XSn

)
[dim(X)]. Note that

the naturality with respect to maps f : X → Y of Poincaré duality spaces follows
from Theorem 7.10 below since a Poincaré duality space yields an object of AM
and a map of Poincaré duality space is a map in AM, see Example 7.8.(2) below.

41with respect to maps of Poincaré duality spaces in the sense of Definition 5.27
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From this observation follows the commutativity of the following diagram (in which
d = dim(X) = dim(Y ))(

CHSn (C∗(X), C∗(X))
)⊗2

(χX)◦−⊗2 ∼=
��

◦ // CHSn (C∗(X), C∗(X))

(χX)◦−∼=

��(
CHSn (C∗(X), C∗(X)) [d]

)⊗2

(f∗)
⊗2

��

CHSn (C∗(X), C∗(X)) [d]

f∗

��(
CHSn (C∗(Y ), C∗(Y )) [d]

)⊗2

CHSn (C∗(Y ), C∗(Y )) [d]

(
CHSn (C∗(Y ), C∗(Y ))

)⊗2 ◦ //

(χY )◦−⊗2 ∼=

OO

CHSn (C∗(Y ), C∗(Y ))

(χY )◦−∼=

OO

where the horizontal arrows are given by the composition (59) of (derived) homo-
morphisms (and Proposition 6.2). By Theorem 7.10, the vertical maps are maps of
En-algebras. Thus the above diagram shows that a map of Poincaré duality space
induces a map of E1-algebras (with respect to the composition (59)) in the (sym-
metric monoidal) category of En-algebras and thus induces a map of En+1-algebras
by Dunn Theorem (see [Du, L-HA] or Theorem 2.30): E1 − Alg

(
En − Alg

) ∼=
En+1 −Alg.

It remains to identify the underlying multiplication in homology with its purely
topological counterpart. This is done in Section 7.2, see Proposition 7.17. �

Passing to homology in Theorem 7.1, we recover the following result first stated
in [CV].

Corollary 7.2. Let X be a n-connected Poincaré duality space. Then the shifted
homology H•+dim(X)(X

Sn) has a natural Pn+1-algebra42 structure which induces
the sphere product [CV, Section 5]

Hp

(
XSn

)
⊗Hq

(
XSn

)
→ Hp+q−dim(X)

(
XSn

)
in homology when X is an oriented closed manifold.

Remark 7.3. Theorem 7.1 (as well as Corollary 7.6 below) still holds if X is a
Poincaré duality space which is connected, nilpotent with finite homotopy groups
in degree less than or equal to n. This is seen by using Proposition 3.38 in addition
to Corollary 3.36 in the proof of the Theorem.

Example 7.4 (Explicit computation in characteristic zero). Let n ≥ 2. In char-
acteristic zero, the singular cochains on X are equivalent, as an E∞-algebra, to a
Sullivan algebra (as in § 6.5.3) and, in particular, one can compute the Brane topol-
ogy structure given by Theorem 7.1 using Corollary 6.39 which gives very explicit
combinatorial models.

42such that is the induced Lie algebra structure is the one of a restricted Lie algebra
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Example 7.5. Assume M is a simply connected closed manifold. Then Theo-
rem 7.1 yields an E2-structure on the chains C∗(LM)[dim(M)] of the free loop
space LM , thus string topology operations at the chain level. According to Exam-
ple 6.29 and Proposition 7.17 below, the underlying Gerstenhaber structure is the
classical Chas-Sullivan one [CS].

Corollary 7.6. Let X,Y be n-connected (n ≥ 1) closed manifolds of the same
dimension and assume f : M → N induces an isomorphism in homology such that
f∗([X]) = [Y ] ∈ H∗(Y, k). Then the induced bijection H∗(X

Sn) ∼= H∗(Y
Sn) is an

algebra isomorphism (with respect to the sphere product).

In particular, the sphere product is an homotopy invariant of n-connected man-
ifolds (with respect to orientation preserving maps).

Proof. By assumption, the induced map ∩f∗([X]) : C∗(Y ) → C∗(Y )[dim(Y )] and
∩[Y ]C∗(Y ) → C∗(Y )[dim(Y )] are homotopic. Thus f induces a map of Poincaré
duality spaces (X, [X]) → (Y, [Y )) which is a quasi-isomorphism. Then, by Theo-
rem 7.1, f∗ : C∗+dim(X)(X

Sn)→ C∗+dim(Y )(Y
Sn) is an equivalence of En-algebras.

In particular, it is an algebra isomorphism in homology so that the result follows
from the identification of the sphere product as asserted in Theorem 7.1 (see Propo-
sition 7.17). �

The above brane product fits into a larger setting of setups43 to define En-actions
on CHSn(A,M). In fact, we start with the following general setup.

Definition 7.7. We define AM as the following category. The objects of AM
are triples (A,M, µ), where A is an E∞-algebra, M is an E∞-A-module, and,
considering the E∞-algebra A ⊗ A with canonical E∞-(A ⊗ A)-modules M and
M ⊗ M (induced via the E∞ structure map A ⊗ A → A), we assume that µ :
M ⊗M →M is an E∞-(A⊗A)-module map44. The morphisms of AM consist of
tuples (f, g) : (A,M, µ)→ (A′,M ′, µ′), where f : A→ A′ is an E∞-morphism, thus
inducing an E∞-A-module structure on M ′, and g : M ′ → M is an E∞-A-module
map, satisfying the compatibility relation,

(84) M ′ ⊗M ′
µ′ //

g⊗g
��

M ′

g

��
M ⊗M

µ // M

in k-Mod∞.

There are two main examples we have in mind for the above definition.

Example 7.8. (1) The first example relates to the sphere product as consid-
ered in Section 4.2 and also in [G1]. Let A and B be two E∞-algebras,
and let h : A → B be a morphism of E∞-algebras. Then, h makes
M := B into an E∞-A-module, and the E∞ structure of B gives a map
B ⊗ B → B which is also an E∞-(A ⊗ A)-module map. Furthermore,
if h factors through an E∞-algebra B′ as a composition of E∞-algebras

43which is useful to study functoriality of brane operations
44said otherwise, the objects of AM are the objects N of the monoidal ∞-category ModEn

endowed with a structure map µN : N ⊗N → N ; the morphisms are however different
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maps h : A
h′→ B′

g→ B, then this induces a morphism between the spaces
(idA, g) : (A,B, µ)→ (A,B′, µ′).

(2) The second example relates to generalizations of sphere topology products
as described in Theorem 7.1 above. Let A be an E∞-algebra and M be an
E∞-A-module and given an E∞-module map ρ : M → A. We define the
induced E∞-(A⊗ A)-module map µ : M ⊗M → M as the composition of
ρ and the E∞-A-module structure of M ,

µ : M ⊗M ρ⊗id−→ A⊗M −→M.

Furthermore, any map of two given E∞-A-modules g : M ′ → M which
commutes with E∞-A-module maps ρ and ρ′,

M ′

ρ′

''
g

��

A

M

ρ

77

also respects the induced relation (84), since g◦µ′(m′1,m′2) = g(ρ′(m′1).m′2) =
ρ′(m′1).g(m′2) = ρ(g((m′1)).g(m′2) = µ ◦ (g ⊗ g)(m′1,m

′
2).

For example, consider the setup from Section 5.4: C∗(X) is an E∞-
coalgebra, C∗(X) = Homk(C∗(X), k) is its linear dual endowed with its
canonical E∞-algebra structure, and caping with the fundamental cycle
∩[X] : C∗(X)→ C∗(X)[dim(X)] induces an E∞-quasi-isomorphism of E∞-
A-modules. The quasi-inverse of this map is an E∞-A-module map ρ :
M := C∗(X)[dim(X)]→ A := C∗(X). Moreover, if f : (X, [X])→ (Y, [Y ])
is a map of Poincaré duality space (Definition 5.27), then the tuple (f∗ :
C∗(Y )→ C∗(X), f∗ : C∗(X)→ C∗(Y )) is a map in the category AM.

For any triple (A,M, µ) which is an object of AM described in Definition 7.7,

we can consider the Hochschild cochains CHSd(A,M). We claim that there is an

Ed-algebra structure on CHSd(A,M), generalizing the Ed-algebra structure from
Theorem 4.12.
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Definition 7.9. Using the notation from Section 4.2, we define the Ed-algebra

structure on CHSd(A,M) by,

C∗
(
Cd(r)

)
⊗
(
CHSd(A,M)

)⊗r
−→ C∗

(
Cd(r)

)
⊗
(
HomA(A⊗S

d

,M)
)⊗r

−→ C∗
(
Cd(r)

)
⊗HomA⊗r ((A

⊗Sd)⊗r,M⊗r)

id⊗(µ◦(r−1))∗−→ C∗
(
Cd(r)

)
⊗HomA⊗r ((A

⊗Sd)⊗r,M)
∼=−→ C∗

(
Cd(r)

)
⊗HomA⊗r ((A

⊗Sd)⊗r, HomA(A,M))
∼=−→ C∗

(
Cd(r)

)
⊗HomA(A⊗L

A⊗r (A⊗S
d

)⊗r,M)

∼=−→ C∗
(
Cd(r)

)
⊗HomA(A⊗(

r times︷ ︸︸ ︷
Sd ∨ · · · ∨ Sd),M)

−→ C∗
(
Cd(r)

)
⊗ CHSd∨···∨Sd(A,M)

pinch∗−→ CHSd(A,M).

We need to show compatibility of the involved operad action. This is similar to the
proof in section 4.2.

In fact, more is true:

Theorem 7.10. The identification given in the previous Definition 7.9 defines a

(contravariant) functor CHSd : AM→ Ed −Alg.

Proof. It only remains to show that morphisms (f, g) : (A,M, µ) → (A′,M ′, µ′)
in AM induce maps of Ed-algebras. Since f : A → A′ makes M ′ into an E∞-A-
algebra, and with this µ′ : M ′⊗M ′ →M ′ into a map of E∞-(A⊗A)-modules, this
follows from the commutativity of the following diagram:(

CHSd(A′,M ′)
)⊗r

��

(f∗)⊗r //
(
CHSd(A,M ′)

)⊗r
��

(g∗)
⊗r

//
(
CHSd(A,M)

)⊗r
��

HomA′⊗r ((A
′⊗Sd)⊗r,M ′

⊗r
)

(µ′◦(r−1))∗
��

(f⊗r)∗ // HomA⊗r ((A
⊗Sd)⊗r,M ′

⊗r
)

(µ′◦(r−1))∗
��

(g⊗r)∗ // HomA⊗r ((A
⊗Sd)⊗r,M⊗r)

(µ◦(r−1))∗
��

HomA′⊗r

(
(A′
⊗Sd

)⊗r,M ′
)

��

(f⊗r)∗ // HomA⊗r

(
(A⊗S

d

)⊗r,M ′
)

��

g∗ // HomA⊗r

(
(A⊗S

d

)⊗r,M
)

��
HomA′

(
A′
⊗(Sd∨···∨Sd)

,M ′
)

pinch∗

��

f∗ // HomA

(
A⊗(Sd∨···∨Sd),M ′

)
pinch∗

��

g∗ // HomA

(
A⊗(Sd∨···∨Sd),M

)
pinch∗

��
HomA′(A

′⊗Sd ,M ′)
f∗ // HomA(A

⊗Sd ,M ′)
g∗ // HomA(A

⊗Sd ,M)

�

By the virtue of the previous theorem and Example 7.8(2), we can thus define a
family of sphere topology operations, one for each E∞-module map C∗(X)[dim(X)]→
C∗(X), which are related by morphisms of Ed-algebras.



HIGHER HOCHSCHILD COHOMOLOGY, BRANE TOPOLOGY AND CENTRALIZERS 87

In particular, for d = 1, we can obtain (chain level, characteristic free) string
topology operations associated to any E∞-module map C∗(M)[dim(M)]→ C∗(M).

7.2. Topological identification of the brane product. In this section, we prove
that the cup product of Hochschild cochains over spheres identifies with the usual
“brane product” in the homology of a free sphere space. The idea of the proof
follows the surface product kind of proof from [GTZ, Theorem 3.4.2].

We start by recalling the construction of the sphere product of Sullivan-Voronov [CV].
Let M be a manifold equipped with a Riemannian metric and let the sphere spaces
Map(Sn,M) be equipped with Fréchet manifold structures. We further assume
that M is closed, oriented. We have a cartesian square of fibrations

(85) Map(Sn ∨ Sn,M)
ρin //

��

Map(Sn,M)×Map(Sn,M)

ev×ev
��

M
diagonal // M ×M

where the evaluation maps on the right are furthermore submersions. We denote
Tub(M) ⊂ M ×M a tubular neighborhood of the diagonal of M , which can be
identified to the normal bundle of the diagonal. The pullback (ev×ev)−1(Tub(M))
by the submersion ev × ev : Map(Sn,M) ×Map(Sn,M) → M ×M can be iden-
tified with a tubular neighborhood Tub(Map(Sn ∨ Sn,M)) of ρin and thus with
a normal bundle of ρin. One forms the corresponding Thom spaces M−TM and
Map(Sn ∨ Sn,M)−TM by collapsing all the complements of the tubular neighbor-
hood to a point. These Thom spaces are spheres (of dimension dim(M)) bundles
over, respectively M , and Map(Sn∨Sn,M). Hence, we have a diagram of pullback
squares

Map(Sn
∐
Sn,M)

collapse//

ev×ev
��

Map(Sn ∨ Sn,M)−TM
π //

ev

��

Map(Sn ∨ Sn,M)

ev

��
M ×M

collapse // M−TM
π // M

where the vertical arrows are fibrations. In particular, the Thom class of ρin is
the pullback (ev∗)(th(M)) ∈ Hdim(M)(Map(Sn ∨ Sn,M)−TM ) of the Thom class
th(M) ∈ Hdim(M)(M−TM ) of M →M ×M .

The above setup allows us to define a Gysin map

(ρin)! : H∗

(
MSn

∐
Sn
)
−→ H∗−dim(M)

(
MSn∨Sn

)
as the composition

(86) (ρin)! = π∗ ◦ (− ∩ ev∗(th(M))) ◦ (collapse)∗.

Definition 7.11 (Sullivan-Voronov [CV]). The sphere product is the composition

?Sn : H∗+dim(M)

(
MSn

)⊗2

→ H∗+2 dim(M)

(
MSn

∐
Sn
)

(ρin)!−→ H∗+dim(M)

(
MSn∨Sn

)
(δ∗Sn )∗−→ H∗+dim(M)

(
MSn

)
where δSn : Sn → Sn ∨ Sn is the pinching map.
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Note that the Thom class th(M) can be represented by any cocycle t(M) which
is Poincaré dual to the pushforward of the fundamental cycle [M ] of M , i.e.,
χM×M (collapse∗(t(M)) =

(
diagonal∗([M ])

)
or, equivalently,

χM−TM (t(M)) =
(
collapse ◦ diagonal∗([M ])

)
.

By Corollary 5.22, we get maps of E∞-modules

ρth(M) : C∗(M
−TM ) −→ C∗−dim(M)(M

−TM ),

ρev∗(th(M)) : C∗
(
Map(Sn ∨ Sn,M)−TM

)
−→ C∗−dim(M)

(
Map(Sn ∨ Sn,M)−TM

)
lifting the cap-products −∩ t(M) and −∩ev∗(t(M)). Thus we obtain the following
chain level interpretation of the sphere product.

Lemma 7.12. The sphere product (Definition 7.11) is induced by passing to the
homology groups in the following composition

(87) ?Sn :
(
C∗
(
MSn

)
[dim(M)]

)⊗2 → C∗
(
MSn

∐
Sn
)
[2 dim(M)]

collapse∗−→ C∗
((
MSn∨Sn)−TM)[2 dim(M)]

ρev∗(th(M))−→ C∗
((
MSn∨Sn)−TM)[dim(M)]

π∗−→ C∗
(
MSn∨Sn)[dim(M)]

(δ∗Sn )∗−→ C∗
(
MSn

)
[dim(M)].

Remark 7.13. In this section we only identify the sphere product which is the
degree 0-component of a higher framed En+1-structure claimed in [CV, Section 5].
The reason is that we do not know higher degree representative of this operations
(in a way similar to the map (87)) since such higher operations would involve a
careful analysis of Gysin maps associated to higher cacti in families. However, it is
possible that the new operads introduced by Bargheer in [Ba] could lead in a near
future to explicit representatives of the degree n Lie Bracket in homology.

We now further assumeX is a general Poincaré duality space (see Definition 5.23).

Recall that by Corollary 3.36 and Corollary 5.22, we have the equivalence (83):

CHSn (C∗(X), C∗(X)) ∼= C∗
(
XSn

)
[dim(X)].

The cup-product can be thus transfered (through the above equivalence) to give a

multiplication
(
C∗
(
XSn

)
[dim(X)]

)⊗2

→ C∗
(
XSn

)
[dim(X)]. We first wish to give

another chain level representative for this multiplication, which is essentially the
content of Lemma 7.15 below. We will then compare it with the sphere product
?Sn given by the composition (87).

The E∞-algebra map C∗(X × X)
diag∗−→ C∗(X) induced by the diagonal X →

X × X makes C∗(X) an E∞-C∗(X × X)-module. By functoriality of the cap-
product, the diagonal C∗(X)→ C∗(X×X) is a map of left (C∗(X×X),∪)-module.

By Theorem 5.13, we thus get a unique lift C∗(X)
diag∗−→ C∗(X×X) of the diagonal

map in C∗(X×X)-ModE∞ . By Lemma 3.30, there is an equivalence of E∞-algebras
C∗(X × X) ∼= C∗(X) ⊗ C∗(X). Further, Poincaré duality (Corollary 5.26) gives

equivalences of E∞-C∗(Y )-modules χX : C∗(Y )
'→ C∗(Y )[dim(Y )] for any Poincaré

duality space Y .
Putting together the last three statements we obtain the first assertion in
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Lemma 7.14. Let X be a Poincaré duality space. There is a map in C∗(X) ⊗
C∗(X)−ModE∞ given by the following composition:

∇X : C∗(X)
'→ C∗(X)[dim(X)]

diag∗−→ C∗(X ×X)[dim(X)]

'→ C∗(X ×X)[dim(X)]
'← C∗(X ×X)[−dim(X)]

∼= C∗(X)⊗ C∗(X)[−dim(X)].

Further, for any closed oriented manifold M , the following diagram is commutative

C∗(M)

∇M ..

π∗ // C∗(M−TM )
ρ∨th(M)// C∗(M−TM )[−dim(M)]

collapse∗ // C∗(M ×M)[− dim(M)]

∼=
��

C∗(M)⊗ C∗(M)[− dim(M)]

in C∗(X)⊗ C∗(X)−ModE∞ .

Proof. The second assertion follows from the identity

collapse∗
(
π∗(x)

)
∩
(
collapse∗

(
t(M)

)
∩ [M ×M ]

)
= collapse∗

(
π∗(x)

)
∩ diagonal∗([M ])

= diagonal∗(x ∩ [M ])

which follows from π ◦ collapse ◦ diagonal = id and the definition of the Thom
class. �

It follows that the map ∇X yields a map of C∗(X)-E∞-modules

(88) ∇X∗ : CHSn∨Sn(C∗(X)) ∼= CHSn
∐
Sn(C∗(X))

L
⊗

C∗(X)⊗2
C∗(X)

1⊗∇X−→ CHSn
∐
Sn(C∗(X))

L
⊗

C∗(X)⊗2
C∗(X)⊗2[−dim(X)]

∼= CHSn
∐
Sn(C∗(X))[−dim(X)].

Thus, dualizing, we get a map

(89)

∇! : CHSn
∐
Sn
(
C∗(X), (C∗(X))∨

)
∼= HomC∗(X)

(
CHSn

∐
Sn(C∗(X)), (C∗(X))∨

)
∇X∗∗−→ HomC∗(X)

(
CHSn∨Sn(C∗(X)), (C∗(X))∨

)
[−dim(X)]

∼= CHSn∨Sn
(
C∗(X), (C∗(X))∨

)
[−dim(X)].
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Recall that we have a pinching map δSn : Sn → Sn ∨ Sn induced by collapsing the
equator of Sn to a point. This gives us a multiplication

(90)

µSn : CHSn
(
C∗(X), (C∗(X))∨

)⊗2 ∼= HomC∗(X)

(
CHSn(C∗(X)), (C∗(X))∨

)⊗2

−→ HomC∗(X)⊗2

(
CHSn

∐
Sn(C∗(X)), (C∗(X))∨ ⊗ (C∗(X))∨

)
∼= HomC∗(X)

(
CHSn

∐
Sn(C∗(X)), (C∗(X))∨

)
∇!

−→ CHSn∨Sn
(
C∗(X), (C∗(X))∨

)
[− dim(X)]

δ∗Sn−→ CHSn
(
C∗(X), (C∗(X))∨

)
[−dim(X)].

Lemma 7.15. Let X be a Poincaré duality space. There is a commutative (in
k-Mod∞) diagram

CHSn (C∗(X), C∗(X))
⊗2 ∪Sn //

∼=
��

CHSn (C∗(X), C∗(X))

∼=
��(

CHSn (C∗(X), (C∗(X))∨) [dim(X)]
)⊗2 µSn // CHSn (C∗(X), (C∗(X))∨) [dim(X)]

where the top arrow is the sphere cup-product of Corollary 4.6 and the vertical
arrows are induced by the Poincaré duality map χX : C∗(X)→ C∗(X)[dim(X)]→(
C∗(X)

)∨
[dim(X)].

Proof. By Lemma 3.30, the E∞-algebra map mX : C∗(X) ⊗ C∗(X) → C∗(X) is
the composition

mX : C∗(X)⊗ C∗(X)
AW∨−→ C∗(X ×X)

diag∗−→ C∗(X).

It follows that the map ∇X defined in Lemma 7.14 sits inside a commutative dia-
gram

C∗(X)⊗ C∗(X)
mX //

χX⊗χX
��

C∗(X)

χX
��(

C∗(X)
)∨ ⊗ (C∗(X)

)∨
[2 dim(X)]

(∇X)∨ //
(
C∗(X)

)∨
[dim(X)]

in C∗(X)⊗ C∗(X)−ModE∞ . It follows that we get a commutative diagram
(91)

HomC∗(X)⊗2

(
CHSn

∐
Sn(C

∗(X)), C∗(X)⊗2
)

(mX )∗ //

(χX )⊗2
∗
��

HomC∗(X)⊗2

(
CHSn

∐
Sn(C

∗(X)), C∗(X)
)

(χX )∗

��
HomC∗(X)⊗2

(
CHSn

∐
Sn(C

∗(X)), (C∗(X))∨)⊗2
)(∇X )∨∗ //

∼=
��

HomC∗(X)⊗2

(
CHSn

∐
Sn(C

∗(X)), (C∗(X))∨
)

∼=
��

HomC∗(X)

(
CHSn

∐
Sn(C

∗(X)), (C∗(X))∨
)

∇! // HomC∗(X)

(
CHSn∨Sn(C

∗(X)), (C∗(X))∨
)
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in k-Mod∞ (note that we have suppress the degree shifting in the diagram for
simplicity). By functoriality, we have a commutative diagram

HomC∗(X)

(
CHSn∨Sn(C

∗(X)), C∗(X)
) δ∗Sn //

(χX )∗

��

HomC∗(X)

(
CHSn(C

∗(X)), C∗(X)
)

(χX )∗

��
HomC∗(X)

(
CHSn∨Sn(C

∗(X)), (C∗(X))∨
) δ∗Sn // HomC∗(X)

(
CHSn(C

∗(X)), (C∗(X))∨
)

which, together with the previous diagram (91) and the definition of the map ∪Sn
(see Corollary 4.6) and the map (90), implies the Lemma. �

The cartesian square of fibrations (85) shows that, when M is n-connected (and
thus MSn is path connected), there is a quasi-isomorphism

(92) C∗
(
MSn∨Sn) ∼= C∗

(
MSn

∐
Sn
) L

⊗
C∗
(
M×M

)C∗(M)

so that the map ∇M of Lemma 7.14 yields a map

id⊗∇M : C∗
(
MSn∨Sn) ∼= C∗

(
M ×M

) L
⊗

C∗
(
M×M

)C∗(M)

id⊗
C∗
(
M×M

)∇M
−→ C∗

(
M ×M

)
[−dim(M)] ∼= C∗

(
MSn

)⊗2
[−dim(M)].

Lemma 7.16. Let X be a n-connected Poincaré duality space. The following dia-
gram

CHSn
(
C∗(X)

) (δSn)∗//
It
��

CHSn∨Sn
(
C∗(X)

)
It
��

∇X∗ // CHSn
(
C∗(X)

)⊗2
[−dim(X)]

It⊗2

��
C∗
(
XSn

) δ∗Sn // C∗
(
XSn∨Sn) id⊗∇X // C∗

(
XSn

)⊗2
[−dim(X)]

is commutative in k-Mod∞ (here the map ∇X∗ is the map (88)).

Proof. This is a consequence of the naturality of the map It : CHX(C∗(Y )) →
C∗(Y X), see Corollary 3.35. �

Proposition 7.17. Let M be an n-connected oriented closed manifold. Then the
following diagram

CHSn (C∗(X), C∗(X))
⊗2 ∪Sn //

∼=
��

CHSn (C∗(X), C∗(X))

∼=
��(

C∗
(
XSn

)
[dim(X)]

)⊗2 ?Sn // C∗
(
XSn

)
[dim(X)]

is commutative in k-Mod∞. Here the horizontal arrows are the sphere cup-product
of Corollary 4.6 and the sphere product (87); the vertical arrows are given by the
equivalences (83) (induced by the Poincaré duality map and Corollary 3.36).
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Since the vertical arrows are the maps defining the En+1-structure given by
Theorem 7.1 on C∗

(
XSn

)
[dim(X)]; it follows that the underlying commutative

algebra structure on homology agrees with the sphere product.

Proof. Recall that there is a canonical isomorphism CHSn(A,A∨) ∼=
(
CHSn(A,A∨)

)∨
.

By assumption M is a Poincaré duality space, hence it has finitely generated ho-

mology groups (Remark 5.25) and the canonical biduality map C∗(X)→
(
C∗(X)

)∨
is a quasi-isomorphism and it is sufficient to prove that the dual of the diagram
depicted in Proposition 7.17 is commutative.

By definition (90) of µSn , lemma 7.16 and lemma 7.15 we are left to prove that the

map id⊗∇M : C∗
(
MSn∨Sn)→ C∗

(
MSn

)⊗2
[− dim(M)] sits inside a commutative

diagram
(93)

C∗
(
MSn∨Sn)

id⊗∇M

++

π∗ // C∗
((
MSn∨Sn)−TM) ρ∨ev∗(th(M)) // C∗

((
MSn∨Sn)−TM)

[−dim(M)]

collapse∗

��
C∗

(
MSn

∐
Sn

)
[−dim(M)]

∼=
��

C∗
(
MSn

)⊗2
[− dim(M)]

in k-Mod∞.
Recall the equivalence (92) above. Under this equivalence, the cup-product by

the pullback ev∗(t(M)) is given by

C∗
(
MSn∨Sn) ∼= C∗

(
MSn

∐
Sn
) L

⊗
C∗
(
M×M

)C∗(M)

id⊗L

C∗
(
M×M

) ∪t(M)

−→ C∗
(
MSn

∐
Sn
) L

⊗
C∗
(
M×M

)C∗(M)[−dim(M)]

∼= C∗
(
MSn∨Sn)[−dim(M)].

Now, the commutativity of diagram (93) follows from Lemma 7.14. �

7.3. A spectral sequence to compute the brane topology product. In
[CJY], the Chas-Sullivan product of spheres and projective spaces was computed
using a spectral sequence of algebras. There is a similar approach for the Brane
product. Indeed, following arguments similar to those of [CJY], there exists a spec-
tral sequence of algebras which converges (as algebras) to the homology H∗

(
(M)S

n)
with product being the sphere product from (87). It is essentially given by the Serre
spectral sequence applied to the fibration ΩnM →Map(Sn,M)→M .

Proposition 7.18. Let M be closed oriented connected manifold. There exists a
second quadrant spectral sequence of algebras {Erp,q, dr : Erp,q → Erp−r,q+r−1}r≥1,

which converges (as algebras) to the homology H∗+dim(M)

(
(M)S

n)
with product

being the sphere product from (87).
Furthermore, the E2 page of the spectral sequence is given by

(94) E2
−p,q
∼= Hp(M ;Hq(Ω

nM)) ∼= Hp(M)⊗Hq(Ω
nM).
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Here, the algebra structure on Hp(M) is given by the usual cup product on coho-
mology, and the product on Hq(Ω

nM) is the Pontrjagin product on the based loop
space.

Proof. The spectral sequence is essentially given by the Serre spectral sequence
applied to the fibration ΩnM →Map(Sn,M)→M . The construction is similar to
the calculation of the loop product in [CJY, section 2] where we now consider the
sphere product as defined by the sequence of maps in (87). We now give some of
the details of this rather lengthy construction, and leave it to the interested reader
to give the full details which are completely analogous to those in [CJY].

For a fibration F ↪→ E
π→ B, consider the singular simplicial set with r-simplicies

Sr(E) = {σ : ∆r → E}. This simplicial set has a filtration obtained by taking
simplicies whose induced simplicies on B are essentially of simplicial degree at
most p,

Fp(Sr(E)) =
{
σ : ∆r → E : π ◦ σ = ρ ◦ f], where ρ ∈ Sq(B), q ≤ p, and

f] : ∆r → ∆p is induced by some non-decreasing f : {0, . . . , r} → {0, . . . , p}
}

Fp(S•(E)) forms a subsimplicial set of S•(E), and taking the associated chain
complex, which is denoted by Fp(C∗(E)) := C∗(Fp(S•(E))), induces the filtration

{0} → · · · → Fp−1(C∗(E))→ Fp(C∗(E))→ · · · → C∗(E)

of C∗(E). This is the filtration which in turn induces the Serre spectral sequence
converging to H∗(E).

Just as in [CJY], we may analyze the involved maps in the sphere product (87)
and their behavior under the above filtration. For the space (MSn∨Sn)−TM =
ev∗(M−TM ) appearing in (87), which involves the Thom construction, we may in
turn use the filtration of pairs,

Fp(C∗(ev
∗(DTM ), ev∗(STM ))) := Fp(C∗(ev

∗(DTM )))/Fp(C∗(ev
∗(STM ))),

where M−TM = DTM/STM is given by a collapsing the tubular disk DTM of M in
TM by the corresponding boundary sphere STM . This relative Serre spectral se-
quence converges to H∗((M

Sn∨Sn)−TM ). All the terms in (87) respect the filtration
in the following sense:

Fp
(
C∗(M

Sn)
)
⊗ Fq

(
C∗(M

Sn)
)

−→ Fp+q
(
C∗
(
MSn

∐
Sn
))

Fp
(
C∗
(
MSn

∐
Sn
)) collapse∗−→ Fp(C∗(ev

∗(DTM ), ev∗(STM )))

Fp(C∗(ev
∗(DTM ), ev∗(STM )))

ρev∗(th(M))−→ Fp−dim(M)(C∗(ev
∗(DTM ), ev∗(STM )))

Fp(C∗(ev
∗(DTM ), ev∗(STM )))

π∗−→ Fp
(
C∗
(
MSn∨Sn))

Fp
(
C∗
(
MSn∨Sn)) (δ∗Sn )∗−→ Fp

(
C∗
(
MSn

))
.

The above is obvious for most of the stated maps, except for the map ρev∗(th(M))

involving capping with the Thom class, which can be proved just as in [CJY,
Theorem 8]. Thus, we arrive at a map of filtered chain complexes

Fp(C∗(M
Sn))⊗ Fq(C∗(MSn))→ Fp+q−dim(M)(C∗(M

Sn))

inducing a map of spectral sequences

Ẽrp,s ⊗ Ẽrq,t → Ẽrp+q−dim(M),s+t
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such that on the Ẽ2 page this is given by a map

Hp(M ;Hs(Ω
nM))⊗Hq(M ;Ht(Ω

nM))→ Hp+q−dim(M)(M ;Hs+t(Ω
nM)).

Checking the maps in the sphere product according to their component on the
base M and the fiber ΩnM shows that this product is just the intersection prod-
uct on H∗(M), and the Pontrjagin product on H∗(Ω

nM). Now, shifting the
spectral sequence to the left by dim(M), we obtain another spectral sequence

Erp,t := Ẽrp+dim(M),t, which now lives completely in the second quadrant, and for

which the sphere product induces a map Erp,s ⊗Erq,t → Erp+q,s+t converging to the
sphere product on homology,

Hp+dim(M)(M
Sn)⊗Hq+dim(M)(M

Sn)→ Hp+q+dim(M)(M
Sn).

The E2 page of this new spectral sequence is given by E2
p,s = Hp+dim(M)(M ;Hs(Ω

nM)),
so that, as a last step for obtaining the claimed spectral sequence in (94), we use
Poincaré duality to write E2

p,s = H−p(M ;Hs(Ω
nM)). As the the intersection prod-

uct becomes the cup product in cohomology under Poincaré duality, we finally arrive
at the claimed spectral sequence. �

We end this section with a computation of the sphere product in the case where
M = Sk is itself a sphere of a certain dimension k.

Example 7.19. Let Sn denote the n-sphere, let n > k, and denote by A = C•(Sk)
a cochain model for the k-sphere. By formality of the sphere, we may assume that
A = H•(Sk). By Proposition 7.18, there exists a second quadrant spectral sequence
of algebras {Erp,q, dr : Erp,q → Erp−r,q+r−1}r≥1, which converges (as algebras) to the

Brane homology H∗+k
(
(Sk)S

n)
; the product being the sphere product from (87).

Furthermore, the E2 page of the spectral sequence is given by

(95) E2
−p,q
∼= Hp(Sk;Hq(Ω

nSk)) ∼= Hp(Sk)⊗Hq(Ω
nSk).

Now we use the fact that H•(Sk) = span{1, a} is a two dimensional space with a
in degree k with the obvious cup product. To determine H•(Ω

nSk), we distinguish
between the cases where k is odd or even.

First, assume that k = 2m+ 1 is odd. One calculates the homology with Pontr-
jagin product as H•(Ω

nSk) ∼= Λ(x) as the free algebra in one generator x in degree
k−n. Thus, we can distinguish two cases, where n is even or odd. Figure 2 displays
a picture of the generators of H•(Sk)⊗H•(ΩnSk).

In the case where n is even, x is of odd degree k − n, so that x2 = 0. Since the
differential dr on the rth page is of bi-degree (−r, r− 1), all differentials have to be
zero in this case. (More precisely, the rth differential would map bi-degree (0, 0) to
(−r, r − 1) 6= (−k, k − n) for any r.)

In the case where n is odd, x is of even degree k − n, so that x2 6= 0. We
see that the rth differential dr could possibly nonzero, namely in the case where
(−r, r − 1) = (−k, p(k − n)). Solving r = k and thus k − 1 = p(k − n), we see
that the differential is always zero in the case when k − 1 is not a factor of k − n.
(In the case where k − 1 is a factor of k − n further analysis needs to be applied.
For example, the above calculation applies when calculating the sphere product of

H∗+13

(
(S13)S

5)
but it would not apply to H∗+13

(
(S13)S

7)
since 13 − 7 = 6 is a

factor of 13− 1 = 12.)
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Figure 2. The generators of H•(Sk)⊗H•(ΩnSk)

We thus obtained the following result:

(96) Let k > n > 1 with k odd.

If (n is even), or if (n is odd, and k − n is not a factor of k − 1), then:

H∗+k
(
(Sk)S

n)
= Λ[a]⊗ Λ[x], with |a| = −k and |x| = k − n

One can ask for a similar analysis of the brane product when the underlying
manifold is an even sphere Sk with k = 2m. One calculates the Pontrjagin ring
as H•(Ω

nSk) ∼= Λ[x, y], where x is of degree k − n, and y is of degree 2k − 1 − n.
Unfortunately, the simple analysis of the involved degrees, similar to the one done
for odd spheres, fails in this case, since one can check that the differential will
never be zero purely by degree reasons. Thus, a computation of the brane product
involves identifying the differentials of the spectral sequence, which are in general
non trivial. Indeed, in [CJY], the differential dk in the spectral sequence for k even
and n = 1 was shown to be non-zero.

Remark 7.20. For an odd sphere Sk of sufficiently high connectivity, we have iden-
tified the sphere product with the cup product in Proposition 7.17, C∗((S

k)S
n

)[k] ∼=
CHSn(A,A), where we may take A to be the Sullivan model of the k-sphere.
By Proposition 6.15, this structure is identified with the algebra structure on
CHSn(A,A) ∼= HHEn(A,A), which by Corollary 6.39, was also identified with
HHEn(A,A) ∼= SymA(Der(A,A)[n]). This, in turn, was explicitly calculated in
Example 6.40. Note that the two calculations in Examples 7.19 and 6.40 for the
product on C∗((S

k)S
n

)[k] do indeed produce the same result.

8. Iterated bar constructions

8.1. Iterated loop spaces and iterated bar constructions for E∞-algebras.
In this section we study the case of spaces of pointed maps from spheres to X, i.e.
iterated loop spaces. The idea is to apply the formalism of the higher Hochschild
functor to the Bar construction of augmented E∞-algebras.
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Let (A, d) be a differential graded unital associative algebra (DGA for short)

which is equipped with an augmentation ε : A → k. Denote A = ker(A
ε→ k) the

augmentation ideal of A. The standard bar construction on A is the chain complex
(Barstd(A), b) defined by

Barstd(A) =
⊕
n≥1

A
⊗n

with differential given by

b(a1 ⊗ · · · an) =

n∑
i=1

±a1 ⊗ · · · ⊗ d(ai)⊗ · · · ⊗ an

+

n−1∑
i=1

±a1 ⊗ · · · ⊗ (ai · ai+1)⊗ · · · ⊗ an

see [FHT, Fre2, KM] for details (and signs). Further, if A is a commutative differ-
ential graded algebra (CDGA for short), then the shuffle product makes the Bar
construction Barstd(A) a CDGA as well.

Remark 8.1. Note that, by our convention on ⊗k, if A is not flat over k, we
replace it by a flat resolution. In particular Barstd : E1−Alg → k-Mod∞ preserves
weak equivalences. This definition of Barstd(A) thus agrees with the classical one
as soon as the underlying chain complex of A is flat over k.

Remark 8.2. The standard bar construction above extends naturally to A∞-
algebras. It also extends to any augmented E1-algebra. Indeed, one can prove
a Lemma similar to Lemma 8.3 below with factorization homology

∫
I
(A, k) (of the

E1-algebra) instead of Hochschild chains over I (see [F1, F2, L-HA, AFT]). Note

that, there is a natural equivalence
∫
I
(A, k) ∼= k

L
⊗
A
k. In particular, if B is any DGA

equivalent to A, then the standard bar construction of A is naturally equivalent to
Barstd(B) in k-Mod∞.

Let A be an E∞-algebra and let ε : A→ k be an augmentation. In particular, we
can see k as an A-module thanks to the augmentation ε. In particular A is an E1-
algebra so that we can choose a DGA B and a quasi-isomorphism f : B → A of E1-
algebras. Then we define Barstd(A) := Barstd(B). The fact that this construction
is well-defined45 indeed follows from the following lemma:

Lemma 8.3. Let I = [0, 1] be the closed interval. There is a natural equivalence
(in k-Mod∞)

(97) CHI(A)
L
⊗

CHS0 (A)
k ∼= Barstd(A)

where Barstd(A) is the standard Bar construction. Further if A is a CDGA, the
equivalence (97) is an equivalence of E∞-algebras (where Barstd(A) is endowed
with its CDGA-structure induced by the shuffle product).

Proof. Let Istd• be the standard simplicial set model of the interval (viewed as a
CW-complex with two vertices and one non-degenerate 1-cell). More precisely,
Istdk = {0, . . . , k + 1} with face maps di given, for i = 0, . . . , k, by di(j) equal to j

45i.e. independent of the choice of B
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or j−1 depending on j ≤ i or j > i. For any differential graded associative algebra
B, one can form the simplicial dg-algebra

C̃Istd• (B) := (B⊗I
std
k )k≥0 = (B ⊗Bk ⊗B)k≥0

where the simplicial structure is defined as for Hochschild chains of a CDGA (it is
immediate to check, and well known, that the commutativity is not necessary to
check the simplicial identities in that case). Further the associated46 differential

graded module DK(C̃Istd• (B)) is the two-sided Bar construction Barstd(B,B,B)

of B (see [GTZ, Example 2.3.4]). In particular, if f : B
'→ A is an equivalence of

E1-algebras, with B a DGA, then DK(C̃Istd• (B))
f∗→ Barstd(A) is an equivalence

(natural in A, B).
Now, forgetting the E∞-structure of the Hochschild chain complex CHIstd•

(A),
we get a quasi-isomorphism of simplicial chain complexes

f : C̃Istd• (B)
'−→ ˜CHIstd•

(A)

and thus after taking the Dold-Kan ∞-functor DK : sk-Mod∞ → k-Mod∞, we

see that CHIstd•
(A) ∼= DK(C̃Istd• (B)). Now the result follows since Barstd(B) ∼=∼=⊕

n≥1B
⊗n

is the normalized chain complex associated to the simplicial chain com-

plex C̃Istd• (B), thus is quasi-isomorphic to DK(C̃Istd• (B)).

When A is a CDGA, the result follows from Corollary 3.7 and [GTZ, Section
2]. �

In particular, we get an E∞-lifting of the Bar construction of an E∞-algebra
that we denote

(98) Bar(A) := CHI(A)
L
⊗

CHS0 (A)
k.

Note that the augmentation ε : A → k induces augmentations ε∗ : CHI(A) →
CHI(k) ∼= k, ε∗ : CHS0(A)→ CHS0(k) ∼= k and thus an augmentation Bar(A)→
k as well.

Since Bar(A) is an augmented E∞-algebra, we can take its Bar construction
again.

Definition 8.4. The nth-iterated Bar construction of an augmented E∞-algebra
A is the E∞-algebra Bar(n)(A) = Bar(· · · (Bar(A)) · · · ).

Summing up the above results we have:

Proposition 8.5. The nth-iterated Bar construction Bar is an ∞-functor

Bar(n) : E∞-Alg→ E∞-Alg.

Further, there is a natural equivalence in E∞-Alg between B(n)(A) and the nth-
iterated Bar construction defined by B. Fresse [Fre2].

Proof. Since A 7→ CHI(A) is an ∞-endofunctor of E∞-Alg, the same follows for
Bar (and its iteration). By Lemma 8.3, the Bar(A) is equivalent (in k-Mod∞)
to Barstd(A) and, further, this equivalence is an equivalence in E∞-Alg if A is a
CDGA and Barstd(A) is endowed with the CDGA structure given by the shuffle

46via the usual Dold-Kan construction
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product. Thus the uniqueness of the Bar construction in E∞-Alg obtained in [Fre2]
shows that Bar(n) is the correct nth-iterated Bar construction. �

Remark 8.6. Since the canonical map CHI(A)→ CHpt(A) ∼= A is an equivalence,
we recover immediately from the excision axiom

Bar(A) ∼= A
L
⊗

CHS0 (A)
k ∼= k

L
⊗
A
k.

Remark 8.7. In terms of factorization algebras, one has the following definition.
Considered the unit interval with two stratified points given by its endpoints. Then,
the analogue of Proposition 5.6 in that case is that a locally constant (stratified)
factorization algebra on I is the same as the data of an E1-algebra A and a pair of
left A-module M and a right A-module N . In particular taking the factorization
algebra A for which A is augmented and M = N = k, we obtain that the factoriza-
tion homology

∫
I
A (denoted

∫
I
(A, k) in [F1]) is equivalent to the Bar construction,

see [F1] for details.

There is an easy interpretation of the iterated Bar construction in terms of higher
Hochschild chains. Note that, since k is an A-algebra (via the augmentation),

CHSn(A, k) ∼= CHSn(A)
L
⊗
A
k is an E∞-algebra.

Proposition 8.8. There are natural equivalences of E∞-algebras

CHSn(A, k) ∼= Bar(n)(A).

Proof. Since Sn ∼= Dn ∪hSn−1 pt, the homotopy invariance and excision axiom for
Hochschild chains implies the following sequence of natural (in A) equivalences of
E∞-algebras

CHSn(A, k) ∼= CHSn(A)
L
⊗
A
k ∼= CHIn(A)

L
⊗

CHSn−1 (A)
k

Thus, for n = 1, the Lemma is proved (by Definition (98)).
Since CHX(k) ∼= k for all X ∈ Top∞, by Corollary 3.29.(3), there are equiva-

lences of E∞-algebras

CHI

(
CHSn−1(A)

L
⊗
A
k
)
∼= CHI

(
CHSn−1(A)

) L
⊗

CHI(A)
k

∼= CH(I×Sn−1)/I×{1}(A).

where the last equivalence follows from Corollary 3.29.(4) and the excision axiom.

Tensoring the last equivalence by
L
⊗

CHS0

(
CHSn−1 (A,k)

)k and applying the excision

axiom again, we get

CHI

(
CHSn−1(A)

L
⊗
A
k
) L

⊗
CHS0

(
CHSn−1 (A,k)

) k ∼= CHSn(A)
L
⊗
A
k.

Since the left hand side is Bar
(
CHSn−1(A)

L
⊗
A
k
)

, the Lemma now follows by in-

duction. �
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We now study the coalgebra structure carried by the iterated Bar construction.
Recall that the standard Bar construction of a DGA carries a natural associative
coalgebra structure. We wish to apply the results of Section 4.2 to study the same
result for En-coalgebras structures.

Recall the continuous map (25) pinch : Cn(r)× Sn −→
∨
i=1...r S

n. Similarly to
the definition of the map (26), applying the singular set functor to the map (25)
we get a morphism

(99) pinchS
n,r
∗ : C∗

(
Cn(r)

)
⊗ CHSn(A)

L
⊗
A
k

pinch∗⊗L
Aid−→ CH∨r

i=1 S
n(A)

L
⊗
A
k ∼=

(
CH∐r

i=1 S
n(A)

L
⊗
A⊗r

A
) L
⊗
A
k

∼=
(
CH∐r

i=1 S
n(A)

) L
⊗
A⊗r

k ∼=
(
CHSn(A, k)

)⊗r
where the last equivalences follows from the excision axiom, the coproduct axiom
and the definition of CHSn(A, k).

Note that there is a canonical equivalence

(100) Homk

(
CHSn(A)⊗L

A k, k
)
∼= RHomA

(
CHSn(A), k

)
∼= CHSn(A, k).

Under this identification, the dual of the map (99) is the pinching map (26) from
Section 4.1.

Theorem 8.9. Let A be an E∞-algebra and ε : A→ k an augmentation.

(1) The maps (99) pinchS
n,r
∗ : C∗

(
Cn(r)

)
⊗ CHSn(A, k) →

(
CHSn(A, k)

)⊗r
makes the iterated Bar construction Bar(n)(A) ∼= CHSn(A, k) a natural
En-coalgebra (in the (∞, 1)-category of E∞-algebras)

(2) The dual En-algebra RHom(Bar(n)(A), k) is naturally equivalent to CHSn(A, k)
in En-Alg and thus to the centralizer z(ε) of the augmentation (viewed as a
map of En-algebra by restriction).

Proof. The proof of the first statement is similar to the proof of Theorem 4.12
(except that we take the predual of it). Fixing c ∈ C∗(Cn(r)), all maps involved

in the composition (99) defining pinchS
n,r
∗ (c,−) are maps of E∞-algebras. Hence

the structure maps of the En-coalgebra structures are compatible with the E∞-
structure.

Further, since the linear dual of the map (99) is the pinching map (26), statement
(2) follows from Theorem 4.12, the equivalence

RHom(Bar(n)(A), k) ∼= RHomA

(
CHSn(A), k

)
∼= CHSn(A, k)

and Corollary 6.26 �

If Y is a pointed space, its E∞-algebra of cochains C∗(Y ) has a canonical aug-
mentation C∗(Y ) → C∗(pt) ∼= k induced by the base point pt → Y . Tensoring
the map It : CHSn(C∗(Y )) −→ C∗

(
Y S

n)
(given by Theorem 3.33) with ⊗L

C∗(Y )k

yields a natural E∞-algebra morphism

(101) ItΩ
n

: Bar(n)(C∗(Y )) ∼= CHSn(C∗(Y ), k)

It⊗L
C∗(Y )k−→ C∗

(
Y S

n)
⊗L
C∗(Y ) k −→ C∗

(
Ωn(Y )

)
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where the last map is induced by applying the singular cochain functor to Ωn(Y ) ∼=
Y S

n ×hY pt.
Further, using the equivalence (100), the linear dual of this map (composed with

the canonical biduality morphism) yields a map
(102)

ItΩn : C∗
(
Ωn(Y )

)
−→ C∗

(
Ωn(Y )

)∨ −→ CHSn(C∗(Y ), k) ∼=
(
Bar(n)(C∗(Y ))

)∨
We can now state our main application to iterated loop spaces, generalizing

classical results in algebraic topology. Since the iterated loop space Ωn(Y ) are En-
algebras in spaces, C∗(Ωn(Y )) is an En − coalgebra in E∞-Alg and C∗(Ω

n(Y )) an
En-algebra (in E∞-coAlg, the (∞, 1)-category of E∞-coalgebras).

Corollary 8.10. Let Y be a pointed topological space.

(1) The map (101) ItΩn : Bar(n)(C∗(Y )) → C∗
(
Ωn(Y )

)
is an En-coalgebra

morphism in the category of E∞-algebras. It is further an equivalence if Y
is n-connected.

(2) Dually, the map (102) ItΩn : C∗
(
Ωn(Y )

)
−→

(
Bar(n)(C∗(Y ))

)∨
is an En-

algebra morphism (in k-Mod∞). Further, if k is a field, Y is n-connected

and has finite dimensional homology groups, then
(
Bar(n)(C∗(Y ))

)∨
is an

E∞-coalgebra and the map (102) ItΩn is an equivalence of En-algebras in
E∞-coAlg.

In particular, the Hochschild chains over the spheres is a model for the natural
En-algebra structure on C∗(Ω

nY ).

Proof. By Theorem 3.33, the map It : CHSn(C∗(Y )) −→ C∗
(
Y S

n)
is an E∞-

algebra map and thus so is ItΩn . Further, Theorem 3.33 gives a natural transfor-
mation

It : CH∗X
(
C∗(Y )

)
−→ C∗

(
Y X
)

from which we deduce a commutative diagram

(103) CHIn
(
C∗(Y )

) L
⊗

CHSn−1

(
C∗(Y )

)C∗(Y )
L
⊗

C∗(Y )
k

It⊗L
It id

��

' // CHSn
(
C∗(Y )

) L
⊗

C∗(Y )
k

It⊗L
C∗(Y )id

��

C∗
(
Y I

n) L
⊗

C∗
(
Y Sn−1

)C∗(Y )
L
⊗

C∗(Y )
k // C∗

(
Y S

n) L
⊗

C∗(Y )
k

in E∞-Alg in which the horizontal arrows are induced by the homotopy pushout
ΩnX ∼= XIn ∪XSn−1 pt. The lower horizontal arrow is an equivalence when Y is n-

connected. Further, the map It : CHSn−1

(
C∗(Y )

)
→ C∗

(
Y S

n−1)
is an equivalence

when Y is n − 1-connected by Theorem 3.33. Since the map induced by the base
point C∗(Y ) → CHIn(C∗(Y )) is an equivalence, the map It : CHIn(C∗(Y )) →
C∗
(
Y I

n)
is an equivalence when Y is connected. Thus, we deduce from the com-

mutativity of diagram (103) that the map ItΩn : Bar(n)(C∗(Y )) → C∗
(
Ωn(Y )

)
is

an equivalence when Y is n-connected.
In order to finish the proof of Assertion 1 in Corollary 8.10, it remains to check

that ItΩn is a map of En-coalgebras. By definition, the En-coalgebra structure
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of C∗
(
Ωn(Y )

)
is induced by taking the singular cochains functor (from Top∞ to

E∞-Alg) to the En-algebra structure of Ωn(Y ) which is the (homotopy pullback)
Ωn(Y ) ∼=

(
Y S

n ×Y pt
)
. By definition the En-algebra structure of Ωn(Y ) is induced

by the pinching map (26) Cn(r) × Sn →
∨
i=1...r S

n. Indeed, since the pinching
map preserves the base point of Sn, we have the following composition

(104) Cn(r)×
(
Y S

n

×hY pt
)r ∼=−→ Cn(r)×

(
Y

∐
i=1...r S

n)
×Y r pt

∼=−→
(
Y

∨
i=1...r S

n)
×Y pt

pinch∗−→ Y S
n

×Y pt.
By naturality of It, we have a commutative diagram

CHSn
(
C∗(Y )

) L
⊗

C∗(Y )
k

pinch∗
L
⊗

C∗(Y )
id

//

It⊗L
C∗(Y )id

��

CH∨
i=1...r S

n

(
C∗(Y )

) L
⊗

C∗(Y )
k

It⊗L
C∗(Y )id

��

C∗
(
Y S

n) L
⊗

C∗(Y )
k

C∗(pinch∗) // C∗
(
Y

∨
i=1...r S

n) L
⊗

C∗(Y )
k

.

The commutativity of this diagram, together with the definition of the map (99)

pinchS
n,r
∗ : C∗

(
Cn(r)

)
⊗CHSn(A)

L
⊗
A
k →

(
CHSn(A)

L
⊗
A
k
)⊗r

giving the En-coalgebra

structure ofBar(n)(C∗(Y )), and the fact that the En-coalgeba structure of C∗(Ωn(Y ))
is given by applying the functor C∗(−) to the composition (104) show that ItΩn is
an En-algebra map.

The proof of the fact that ItΩn is a map of En-algebra is similar, using in ad-
dition the naturality of the biduality morphism C → C∨∨ and Corollary 3.36.
Further, when k is a field and the groups H`(Y ) are finitely generated, then
C∗(Y ) → (C∗(Y ))∨ is an equivalence. Further, if Y is n-connected, it follows
from the Eilenberg-Moore spectral sequence that Bar(n)(C∗(Y )) has finite dimen-

sional homology groups. Hence, the dual
(
Bar(n)(C∗(Y ))

)∨
inherits an natural

E∞-coalgebra structure (dual of the E∞-algebra structure of Bar(n)(C∗(Y ))). It
is then immediate to check that the arguments to prove Statement (1) above can
be dualized to prove that ItΩn is also an equivalence of E∞-coalgebras. �

Remark 8.11. A careful analysis of the proof of Corollary 8.10 shows that the
assumption that Y is n-connected can be replaced by the assumption that the
cohomological Eilenberg-Moore spectral sequence of the path space fibration is
strongly convergent for all ΩiY (i ≤ n).

Remark 8.12. Statement (2) in Corollary 8.10 is somehow unsatisfying since one

recovers an E∞-coalgebra structure on the right hand side
(
Bar(n)(C∗(Y ))

)∨
only

when the biduality morphism Bar(n)(C∗(Y )) →
(
Bar(n)(C∗(Y ))

)∨∨
is an equiv-

alence (while the left hand side has always such a structure). The reason for it is
that this statement is in fact the bidual of a statement involving iterated coBar
construction of E∞-coalgebras.

Indeed, one can define Hochschild cochains over spaces for E∞-coalgebras in
a similar way to what we do in Section 3 getting an ∞-functor CH : Topop∞ ×
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E∞-coAlg → E∞-coAlg ((X,C) 7→ CHX(C)). For instance, one has a natural

equivalence CHX(C) ∼= C
L
⊗
E⊗∞

C∗(X) similar to Proposition 3.6.

All results of Section 3, Section 3.4 and Section 4 have “dual” counterparts which
can be proved similarly. We claim that there is an iterated cobar construction
coBar(n) : E∞-coAlg → En-Alg(E∞-coAlg) defined similarly to this Section 8.1
and that further there is a natural En-algebra map coBar(n)(C∗(Y ))→ C∗(Ω

n(Y ))
in E∞-coAlg which is an equivalence when Y is n-connected. We leave the many
details to be filled in to the interested reader.

8.2. Iterated Bar constructions of augmented En-algebras. In this section
we explain how to generalize the iterated Bar construction for E∞-algebras in § 8.1
to En-algebras. In particular we describe the En-coalgebra structure of the n-times
iterated Bar construction. Our definition and study of the Bar construction follows
the ones given by Francis [F1] and Lurie [L-HA].

8.2.1. Definition of the iterated Bar construction for En-algebras. In this section we
assume A is an augmented En-algebra and we denote ε : A→ k the augmentation
(which is a map of En-algebras). In particular, we endow k with its structure of
A-En-module given by the augmentation. We denote En-Algaug the (∞, 1)-category
of augmented En-algebras.

For an augmented En-algebra, Definition (98) and Lemma 8.3 suggest to define

(105) Bar(A) :=

∫
D1×Rn−1

A
L
⊗∫

S0×Rn−1 A
k

where k ∼=
∫
I×Rn−1 k is endowed with its natural structure of A-E1-module. This

definition agrees with the usual one:

Lemma 8.13 (Francis [F1]). There is a natural equivalence (in k-Mod∞)

(106) Bar(A) ∼= Barstd(A) ∼= k ⊗L
A k

where Barstd(A) is the standard Bar construction as in § 8.1.

When X be a manifold of dimension d equipped with a framing of X ×Rk, then
for any Ed+k-algebra B,

∫
X×Rk B is canonically an Ek-algebra, see [L-HA, F1] for

details. Note that this follows from Theorem 2.20 and the fact that factorization
algebras on X × Rk are the same as factorization algebras on X with values in
Ed-Alg (see Theorem 2.29 or [GTZ2]). Applying this observation to X = I or
X = S0 we get the following result which is also proved in [F1, L-HA].

Proposition 8.14. The Bar construction (106) for augmented Em-algebras (m ≥
1) has a canonical lift

Bar : Em-Algaug → Em−1-Algaug

which coincides for E∞-algebras with the one given in § 8.1 and further sits into a
commutative diagram

E1-Alg

Bar

��

E2-Alg

Bar

��

oo · · ·oo Em-Algoo

Bar

��

· · ·oo E∞-Algoo

Bar

��
k-Mod∞ E1-Algoo · · ·oo Em−1-Algoo · · ·oo E∞-Algoo
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where the horizontal arrows are the canonical forget functors induced by the tower
of maps of operads (2).

Proof. By Theorem 2.20 (and the above observation which is a special case of of
the Fubini formula for factorization homology [GTZ2, Corollary 17] ), we have
that

∫
S0×Rm−1 A,

∫
I×Rm−1 A and k ∼=

∫
I×Rm−1 A are (global sections of) locally

constant factorizations algebras over Rm−1. Here, we see S0 as being the boundary
of the closed interval I = [−1, 1] which is framed (we choose the framing so that
the induced orientation is the natural one); in particular S0 ∼= {−1, 1} inherits a
framing as well (note that the two points in S0 get opposite orientation this way).
In particular S0×Rm−1 is equipped with the product framing. Since S0×Rm−1 is a
framed m−1 dimensional manifold and A an Em-algebra, its factorization homology
with value in A is the one of the product of framed manifolds S0 × Rm−1 × R.
Hence, we have that

∫
S0×Rm−1 A is in fact an Em-algebra, that is a locally constant

factorization algebra over Rm−1 × R.
In particular, using Theorem 2.30,

∫
S0×Rm−1 A is naturally an E1-algebra in the

symmetric monoidal category of Em−1-algebras, i.e., an E1-algebra in the category
of locally constant factorizations algebras over Rm−1.

Similarly
∫
I×Rm−1 A is a left module over

∫
S0×Rm−1 A in the symmetric monoidal

category locally constant factorizations algebras over Rm−1 (or equivalently of

Em−1-algebras). In other words, it belongs to
( ∫

S0×Rm−1 A
)
-ModE1

(
FaclcRm−1

)
which is equivalent to

( ∫
S0×Rm−1 A

)
-ModE1

(
Em−1-Alg

)
. Since the same holds

for k, we obtain that the Bar construction is an object in FaclcRm−1 , hence inherits
a structure of Em−1-algebra.

Further, the augmentation ε : A→ k induces a maps
∫
I×Rm−1 ε :

∫
I×Rm−1 A→ k

which is a map of locally constant factorization algebras on Rm−1 hence of Em−1-
algebras. Similarly

∫
S0×Rm−1 A → k is a map of Em-algebras; hence ε induces an

augmentation Bar(A)→ k in Em−1-Alg. The equivalence of the two definitions for
E∞-algebras is an immediate consequence of Theorem 3.13 or [GTZ2, Theorem 5].

The commutativity of the diagram follows from the fact that Em-Alg→ Em−1-Alg
is induced by the map of ∞-operad E⊗m−1 → E⊗m induced by taking the product of
m− 1-dimensional disks with the interval R, i.e, it is induced by the pushforward
of factorization algebras along the projection Rm−1 × R→ Rm−1. �

By Proposition 8.14, we can iterate (up to m-times) the Bar constructions of an
Em-algebra.

Definition 8.15. Let 0 ≤ n ≤ m. The nth-iterated bar construction of an aug-
mented Em-algebra A is the Em−n-algebra (given by Proposition 8.14)

Bar(n)(A) := Bar(· · · (Bar(A)) · · · )

which is the value on A of the (n-fold iterated Bar) functor: Bar◦n : Em-Algaug −→
Em−n-Algaug.

Proposition 8.14 implies that Definition 8.15 agrees with Definition 8.4 for E∞-
algebras.

Remark 8.16. The iterated Bar construction given in Definition 8.15 should be
closely related to the one (obtained at the level of model categories) by Fresse [Fre3].
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The following result, due to Francis [F1, Lemma 2.44], identifies the iterated Bar
construction in terms of factorization homology

Lemma 8.17 (Francis). Let A be an Em-algebra and 0 ≤ n ≤ m. There is a
natural equivalence of Em−n-algebras

Bar(n)(A) ∼=
∫
Dm×Rm−n

A
L
⊗∫

Sm−1×Rm−n+1 A
k

Proof. This is essentially Lemma 2.44 together with Corollary 3.32 in [F1]. Al-
ternatively, on can use a proof similar to the one of Proposition 8.8 replacing
CHIn(A) with the Em−n-algebra

∫
Im×Rm−n A using excision for factorization ho-

mology (see [F1, AFT, GTZ2]), and the Fubini theorem for factorization homol-
ogy [GTZ2, Corollary 17] instead of Corollary 3.29.(4). �

8.2.2. Factorization algebra models for iterated Bar construction. In this section, we
show that the iterated Bar construction can be computed as factorization homology
of a stratified factorization algebra on the closed n-disk and the n-sphere as well.

Identify In = [−1, 1]n with the closed unit disk in Rn and let Dn = In \ ∂In
be its interior. We consider In as a stratified space with two strata, one of which
is its boundary ∂In (of codimension 1) and the remaining open strata being Dn.
A factorization algebra F on the stratified disk is thus locally constant if for any
inclusion of disks U ⊂ V ⊂ Dn and for any inclusion of half-disks U ⊂ V where
V 6⊂ Dn, the structure map F(U)→ F(V ) is a quasi-isomorphism.

Let ε : A → k be an augmented En-algebra which we may assume to be given
by a map ε : A → k of factorization algebras. By [G2, Proposition 30 and Propo-
sition 31]47, any map of En-algebra f : A→ B defines a locally constant stratified
factorization algebra on In. Indeed, by loc. cit. we have a faithful functor

(107) Υ : HomEn-Alg −→ FaclcIn

between the (∞, 1)-categories of En-algebras morphisms and stratified locally con-
stant factorization algebras on In.

Definition 8.18. We let (A, k) be the locally constant stratified factorization al-
gebra on In defined by the augmentation ε : A → k that is (A, k) = Υ(ε).

Since Υ is a functor, then (A, k) is functorial with respect to maps of augmented
En-algebras. More precisely, we have the faithful functor

(108) Υ̃ : En-Algaug −→ HomEn-Alg −→ FaclcIn .

Remark 8.19. The factorization algebra (A, k) is explicitly described as follows.
Let UIn be the (factorizing) basis of opens consisting of all open subset U ⊂ Dn ⊂
In, and all open half-disk D; recall that we call a half-disk of In an open D ⊂ In

such that is there is an homeomorphism θ : D
∼=→ D̃ × [0, 1) with D ∩ ∂In =

θ−1(D̃ × {0}).

Lemma 8.20. The factorization algebra (A, k) of Definition 8.18 satisfies that:

(1) for any U ⊂ Dn ⊂ In, one has (A, k)(U) = A(U);
(2) for any half-disk D ∈ UIn , one has (A, k)(D) = k(D) = k.

47the reader shall be aware that the notation Dn in [G2] is what we denote In in the present
paper
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(3) The restriction to UIn of the structure maps ρU1,...,Ur,V :
⊗r

i=1(A, k)(Ui)→
(A, k)(V ) is given as follows: if U1, . . . , Ur ∈ UIn are pairwise disjoint open
lying in V ∈ UIn , then
• if V ⊂ Dn, one has

ρU1,...,Ur,V =

r⊗
i=1

(A, k)(Ui) ∼=
r⊗
i=1

A(Ui)
ρAU1,...,Ur,V−→ (A, k)(V )

where the last map is the structure map of the factorization algebra A;
• if V is a half-disk, U1, . . . , Ui ∈ Dn (0 ≤ i ≤ r) and Ui+1, . . . , Ur are

half-disks, one has

ρU1,...,Ur,V =

r⊗
j=1

(A, k)(Uj) ∼=
( i⊗
j=1

A(Uj)
)
⊗
( r⊗
j=i+1

k(Uj)
)

(
⊗i
j=1 ε)⊗id−→

r⊗
j=1

k(Ui)
ρkU1,...,Ur,V−→ k

where the last map is the structure maps of the factorization algebra
associated to k (Example 2.21).

Further, any UIn-prefactorization algebra (in particular any factorization algebra on
on In) satisfying (1), (2) and (3) above is a UIn-factorization algebra and equivalent
to (A, k).

Proof. Since UIn is a factorizing, stable by finite intersection, basis of opens, the
uniqueness in the last claim follows from Proposition 2.28. Since (A, k) is a factor-
ization algebra, then it is a UIn -factorization algebra and the last claim now follows
from the first one.

The restriction to Dn = In \ ∂In of (A, k) is just the factorization algebra
A by [G2, Proposition 30]. Now, by [G2, Example 37 6], the structure maps
when V is a half-disk is given by the left module structure of

∫
(∂In)×(−∞,0]

k over

int(∂In)×(−∞,0]A. The formula for the structure maps now follows from [G2, Corol-
lary 6] and the factorization algebra formula for left modules as in [G2, § 6.1]. �

The ground ring k is trivially augmented and the augmentation ε : A → k is
a map of augmented algebras. Applying the functor Υ̃ defined by the composi-
tion (108) above, we get the following map of factorization algebras:

(109) Υ̃(ε) : (A, k) −→ (k, k).

An immediate consequence of Lemma 8.22 and Example 2.21 is that(k, k) = k. We
thus obtain

Lemma 8.21. Let ε : A→ k be an augmented En-algebra.

• The factorization algebra (A, k) has a canonical augmentation (A, k)
Υ̃(ε):−→

(k, k) = k.
• If D ∈ UIn , then ε(D) : (A, k)(D) → k(D) = k is equal to ε(D)(D) :
A(D)→ k if D ⊂ Dn and to the identity otherwise.

Proof. The first claim was established right before the lemma. The second claim is a
direct derivation of the construction of the functor (107): Υ : HomEn-Alg −→ FaclcIn
in [G2] and Lemma 8.22. �
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Assume now that ε : A → k is an augmented Em-algebra, with m ≥ n and let
again ε : A → k be a map of locally constant factorization algebras representing
it. By Theorem 2.29, then ε : A → k can be seen as a map in En-Alg(FaclcRm−n) ∼=
En-Alg(Em−n-Alg). From Definition 8.18, the factorization algebra (A, k) then

belongs to FaclcIn(Em−n-Alg).

Lemma 8.22. Let ε : A→ k be an augmented Em-algebra and (A, k) ∈ FaclcIn(Em−n-Alg)
be the associated factorization algebra (Definition 8.18). The factorization homology
of (A, k) is equivalent (naturally with respect to maps of augmented Em-algebras)
in Em−n-Alg to the iterated bar construction of A:

p∗(A, k)
'←−
∫
In×Rm−n

(A, k) ∼= Bar(n)(A).

Proof. A similar result can be found in [F1, AFT]. Let q : In → [0, 1] be the
supremum norm map: (x1, . . . , xn) 7→ max(|xi|). We thus have the factorization

algebra q∗(A, k) ∈ Fac[0,1](Em−n-Alg) ∼= Fac[0,1](FaclcRm−n). By [G2, § 6.1], q∗(A, k)
is a stratified locally constant. Here, we see [0, 1] as being stratified with two 0-
dimensional strata given by the points {0} and {1}. The algebra corresponding to
the open dimension 1 stratum (as in [G2, Proposition 26]) is

∫
(∂In)×(−1,1)×Rm−n A,

while the right module corresponding to the stratum {0} is A ∼=
∫
Dn×Rm−n and the

left module corresponding to {1} is k =
∫

(∂In)×Rm−n k (by Example 2.21).

By definition, the factorization homology of (A, k) is the same as the factorization

homology of q∗(A, k) ∈ Faclc[0,1](Em−n-Alg):

p∗(A, k) ∼=
∫
In×Rm−n

(A, k) ∼=
∫

[0,1]

q∗(A, k)

∼=
∫
Dm×Rm−n

A
L
⊗∫

Sm−1×Rm−n+1 A
k

where the last line comes from [G2, Proposition 26]. All the equivalences are further
natural with respect to augmented Em-algebras maps since p∗, q∗ are functors and
by loc. cit.. The result now follows from Lemma 8.17. �

We now derive another factorization algebra model for the Bar construction. Let

D̂n = Sn be the one point compactification of Dn and let κ : In → Sn = D̂n be the

canonical projection collapsing the boundary ∂In to a point. We endow D̂n = Sn

with the stratification with one dimension 0 stratum given by the point at infinity

and one dimension n stratum. This way, κ : In → Sn = D̂n is a map of stratified
spaces (that is maps strata onto strata).

Definition 8.23. We let Â ∈ FacSn be the factorization algebra κ∗((A, k)) ob-

tained by pushforward along κ : In → Sn = D̂n of the factorization algebra (A, k)
of Definition 8.18.

The pushforward κ∗(k) of the trivial factorization algebra k on In is equal to

the trivial factorization algebra k on D̂n. Hence the pushforward along κ of the
augmentation of (A, k) (Lemma 8.21), that is the map

(110) ε̂ : Â = κ∗((A, k))
κ∗

(
Υ̃(ε)
)

−→ k
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is an augmentation for Â.

Assume now that ε : A → k is an augmented Em-algebra, with m ≥ n and let
again ε : A → k be a map of locally constant factorization algebras representing it.

We then get that the factorization algebra Â belongs48 to FacSn(FacRm−n).

Lemma 8.24. Let ε : A→ k be an augmented Em-algebra (m ≥ n) represented by

a map ε : A → k of factorization algebras and Â be given by Definition 8.23.

The factorization homology of Â is equivalent in Em−n-Alg to the iterated bar
construction of A:

p∗(Â) ∼=
∫
In×Rm−n

(A, k)
'←− Bar(n)(A).

This equivalence is natural with respect to maps of augmented Em-algebras.

Proof. Since p∗, κ∗ are functors, by Lemma 8.22 we have an natural equivalence

p∗(Â) = p∗(κ∗((A, k))) = p∗((A, k))
'←−
∫
In×Rm−n

(A, k) ∼= Bar(n)(A).

�

We now describe in more details Â. Recall that we see Sn = D̂n = Dn ∪ {∞}
as a stratified space with one stratum being Dn ⊂ D̂n and the other one being
its point at infinity. A basis of neighborhood of ∞ is given by the complements of
closed Euclidean disk centered at 0 in Dn. In particular, we have a factorizing and

stable by finite intersection basis U
D̂n

consisting of all opens U ⊂ Dn ⊂ D̂n and all

opens which are the complement D̂n \D of a non-empty Euclidean disk D ⊂ Dn

whose center is 0.

Proposition 8.25. The factorization algebra Â of Definition 8.23 satisfies that:

(1) for any U ⊂ Dn ⊂ D̂n = Sn, one has Â(U) = A(U);
(2) for any compact disk49 D ⊂ Dn, one has as an natural equivalence

Â
(
D̂n \D

) ∼= k
(
D̂n \D

)
= k.

(3) The restriction to U
D̂n

of the structure maps ρU1,...,Ur,V :
⊗r

i=1 Â(Ui) →
Â(V ) is given as follows: if U1, . . . , Ur ∈ UD̂n are pairwise disjoint open
lying in V ∈ U

D̂n
, then

• if V ⊂ Dn, one has

ρU1,...,Ur,V =

r⊗
i=1

Â(Ui) ∼=
r⊗
i=1

A(Ui)
ρAU1,...,Ur,V−→ Â(V )

the last map being the structure map of the factorization algebra A;

48by abuse of notation we keep the notation Â for the factorization algebra π∗(Â) ∈
FacSn (FacRm−n )

49by a compact disk of Dn, we mean the image in Dn of an embedding of the closed unit
Euclidean disk
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• if V = D̂n\D, where D is an Euclidean disk centered at 0, U1, . . . , Ui ∈
Dn (0 ≤ i ≤ r) and Ui+1, . . . , Ur are complements of Euclidean disks
centered at 050, one has

ρU1,...,Ur,V =

r⊗
j=1

Â(Uj) ∼=
( i⊗
j=1

A(Uj)
)
⊗
( r⊗
j=i+1

k(Uj)
)

(
⊗i
j=1 ε)⊗id−→

r⊗
j=1

k(Ui)
ρkU1,...,Ur,V−→ k

where the last map is the structure map of the factorization algebra
associated to k.

(4) Â is stratified locally constant on D̂n = Sn (stratified by {∞} ⊂ Dn∪{∞} =
Sn as above).

(5) Any U
D̂n

-prefactorization algebra satisfying (1), (2) and (3) above is a U
D̂n

-

factorization algebra whose unique51 extension as a factorization algebra is

further equivalent to Â.

Point (5) implies that Â is the unique factorization algebra on D̂n satisfying the
properties (1), (2) and (3) of Proposition 8.25.

Remark 8.26. Note also that by Point.(3), the equivalence, for any compact sub-

disk D, Â
(
D̂n \D

) ∼= k of Point.(2), is induced by the augmentation map (110).

Namely, let V be a factorizing cover of D̂n \ D. For any open subset V ∈ V, we

have the augmentation ε̂ : Â(V )→ k(V ) = k which is a map of factorization alge-

bras, hence induces a map of Čech complexex: Č(Â,V) → Č(k,V). The following
diagram, in which the lower arrow is the equivalence of Proposition 8.25.(2),

(111) Č(Â,V)
ε̂ //

��

Č(k,V)

��
Â
(
D̂n \D

) ' // k

is commutative in k-Mod∞ (as proved in the proof of Proposition 8.25). In particu-

lar, the lower map in the diagram is just ε̂(D̂n\D
)

: Â
(
D̂n\D

)
−→ k

(
D̂n\D

)
= k.

Proof of Proposition 8.25. Since Â(U) = (A, k)
(
κ(−1)(U)

)
, point (1) is immediate

from Lemma 8.22.
By the generalized Schoenflies Theorem, the complement D̂n \D is homeomor-

phic to a disk. Consequently, claim (2) boils down to proving that (A, k)
(
(∂In)×

[0, r)
) ∼= k (that is, we are left to the case where D is a compact Euclidean disk).

The open set (∂In) × [0, r) has a factorizing cover, stable by finite intersection,
which consists of open half-disks of the form C × [0, r) (where, for instance C is a
small convex sub-disk of ∂In); denote H such a cover.

Since (A, k) is a factorization algebra, we have that (A, k)
(
(∂In) × [0, r)

)
is

computed by the Čech complex Č
(
H, (A, k)

)
of this cover consisting of open half-

disks. By Lemma 8.20.(2), the value of (A, k) on any half-disk is just k; further the

50note that the Ui’s being disjoint implies i = r or r − 1
51by Proposition 2.28
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structure maps are those of the trivial factorization algebra k (see Example 2.21).
Thus the Čech complex Č

(
H, (A, k)

)
is the same as the one of the factorization

algebra k, that is, Č
(
H, (A, k)

)
= Č

(
H, k

)
. Now, Lemma 2.22 implies that

(A, k)
(
(∂In)× [0, r)

) ∼= k
(
(∂In)× [0, r)

) ∼= CH(∂In)×[0,r)(k) ∼= k,

and, combining this with the definition of the augmentation map (110) and Lemma 8.21,
we further obtain a commutative diagram

Č
(
H, (A, k)

) ∼= //

��

Č(k,H)

��
Â
(
D̂n \D

) ε̂ // k(D̂n \D) = k

which finishes to prove claim (2). In particular we see that the natural equiva-
lence in claim (2) is induced by the augmentation. This implies in particular the
commutativity of diagram (111) above and thus Remark 8.26 as well.

Claim (3) is proved as in Lemma 8.20.

Let V be an open disk containing∞. Then V \{∞} is homeomorphic to Rn\{0}
and κ−1(V ) is homeomorphic to (∂In) × [0, 1). Thus statement (4) reduces to
statement (2).

To prove claim (5), note that U
D̂n

is a factorizing, stable by finite intersection,

basis of opens and Â is a prefactorization algebra satisfying claims (1), (2) and

(3). Since we already know that Â is a factorization algebra, we know that the
data given by the claims (1), (2) and (3) does define a U

D̂n
-factorization algebra.

Proposition 2.28 implies that any factorization algebra whose value on U
D̂n

agrees

with the one of Â (which is given by claims (1), (2) and (3)) is equivalent to Â
which terminates the proof of statement (5). �

8.2.3. The En-coalgebra structure of the iterated Bar construction. In this section
we prove that the iterated Bar construction Bar(n)(A) of an augmented En-algebra
has an En-coalgebra structure. In view of Theorem 2.29, it is equivalent to prove
that there exists a locally constant factorization algebra on Rn whose global section
is the iterated Bar construction Bar(n)(A). This is the approach we follow here.

Remark 8.27 (sketch of the construction). The result of Lemma 8.24 and Propo-
sition 8.25 is that the Bar construction of an augmented En-algebra ε : A → k
is the global section (i.e. factorization homology) of the stratified locally constant

factorization algebra on the Alexandroff compactification Dn ∪{∞} = D̂n = Sn of
Dn whose value on Dn is just the one of A and whose value in a disk centered at
∞ is just k. For any disk D inside Dn, we can also form its Alexandroff one-point

compactification D̂ = {∞} ∪D and by restriction to D, the factorization algebra
associated to A will give rise to a stratified locally constant factorization algebra on
Dn. The procedure can be done simultaneously for pairwise disjoint opens in Dn;
this suggest how the iterated bar construction gives rise to a factorization coalgebra
on Dn. We now make this scheme precise.
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Let ε : A → k be a map of Em-algebras (with m ≥ n) and which we assume
to be represented by a map ε : A → k of factorization algebras over Rm. In
other words, A(D) ∼=

∫
D
A for any disk D ⊂ Rm. Recall from Theorem 2.30

that π∗(A) ∈ FaclcRn(FaclcRm−n). In the following, in order to shorten notations,
we will simply write A for π∗(A). In particular for any U open subset of Rn,
A(U ×Rn) =

∫
U×Rm−n A inherits an Em−n-algebra structure (canonically induced

by a locally constant factorization algebra structure on Rm−n).

The restriction of ε : A → k to U ×Rm−n is an augmentation for A(U ×Rm−n).

Remark 8.28. Let φ : Rn '→ U ⊂ Rn be an embedding of a disk in Rn. Then we

have an homeomorphism φ× id : Rn×Rm−n '→ U ×Rm−n which makes A|U×Rm−n
into a locally constant factorization algebra over Rm hence A(U × Rm−n) is an
Em-algebra.

Definition 8.29. We denote Aφ the augmented Em-algebra A(U × Rm−n) ∼=∫
U×Rm A.

We can thus define Bar(n)(Aφ) the n-fold iterated Bar construction of Aφ and

Âφ ∈ Faclc
Û

(Em−n-Alg) the stratified locally constant factorization algebra of Defi-
nition 8.23.

We wish to define a factorization algebra ÂU on Û ∼= U ∪ {∞} the Alexandroff
compactification of U . We essentially proceed as for Definition 8.23 above:

Definition 8.30. Let WÛ be the open cover52 of Û consisting of all opens W such

that either W ⊂ U ⊂ Û or else W = Û \D where D ⊂ U is any compact disk53

(1) for any W ⊂ U ⊂ Û and for any compact disk D ⊂ U , set

ÂU (W ) = A(W ), ÂU
(
Û \D

)
= k

(
Û \D

)
= k.

(2) Let W1, . . . ,Wr ⊂ Û are pairwise disjoint opens lying in V ∈ Û . Assume
in addition that
(a) either V is in U ⊂ Û (and thus so are all Wi);

(b) or V = Û \ D, where D is a compact disk in U , W1, . . . ,Wi ∈ U
and Wi+1, . . . ,Wr are complements of compact disks (the Wi’s being
disjoint implies i = r or r − 1).

We define “structure maps” ρW1,...,Wr,V :
⊗r

i=1 ÂU (Wi) −→ ÂU (V ) as
follows:
• in case (2a), we set

ρW1,...,Wr,V =

r⊗
i=1

Â(Wi) ∼=
r⊗
i=1

A(Wi)
ρAW1,...,Wr,V−→ Â(V )

the last map being the structure map of the factorization algebra A;

52which is not stable under intersection
53by a compact disk in U , we mean the image in U of an embedding of the closed unit Euclidean

disk
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• in case (2b), we set

ρW1,...,Wr,V =

r⊗
j=1

Â(Wj) =
( i⊗
j=1

A(Wj)
)
⊗
( r⊗
j=i+1

k(Wj)
)

(
⊗i
j=1 ε)⊗id−→

r⊗
j=1

k(Wi)
ρkW1,...,Wr,V−→ k

where the last map is the structure map of the factorization algebra
associated to k.

Lemma 8.31. • There is a unique54 factorization algebra ÂU on Û which
takes the values given by Definition 8.30.(1) and with structure maps spec-
ified by Definition 8.30. (2) above on the relevant opens.

• Further, ÂU is stratified locally constant on Û , which is stratified with one
dimensions 0 stratum given by the point at∞ and one dimension n stratum
given byU .

Proof. Since U is a disk, we can find an embedding φ : Rn '→ U ⊂ Rn, which induces

an homeomorphism D̂n ∼= Û . As in Definition 8.29, we have the Em algebra Aφ and

a stratified locally constant factorization algebra on D̂n ∼= Û . By Proposition 8.25,

we see that the factorization algebra Aφ takes the same value as ÂU on the opens
specified in point (1). Further, it has the same structure maps as those given by

Definition 8.30 (2) on the basis of opens
(
φ(V ), V ∈ U

D̂n

)
.

Thus by Proposition 8.25.(5), we see that Aφ is the unique factorization algebra

structure on Û taking these values.

It only remains to prove that ÂU does has the structure maps claimed by Def-
inition 8.30 (2) in case (2b) for arbitrary compact disk D. The proof is similar to
the proof of the commutativity of Diagram (111) obtained in the proof of Proposi-
tion 8.25; we used the generalized Schoenflies theorem to restrict to a cover by half
disks and use the Čech complexes of this cover to deduce the result. �

Definition 8.32. We denote ÂU the stratified locally constant factorization algebra

on Û defined by Lemma 8.31. It is augmented ε̂ : ÂU → k.

Remark 8.33. Let φ : Rm '→ U be an homeomorphism so that we have the En-
algebra Aφ from Definition 8.29. By Lemma 8.24 and Lemma 8.31, we have an
natural (with respect to maps of augmented Em-algebras) equivalence of Em−n-
algebras:

(112) Bar(n)(Aφ)
'−→ p∗

(
Âφ
) ∼= ÂU (Û).

The one point compactification is contravariant with respect to open inclusions:
if U ⊂ V are open subsets of Rn, we have the continuous map

(113) ιVU : V̂ −→ Û

which is the identity on U ⊂ V̂ and collapses the complement V̂ \ U to the point

at ∞ of Û = U ∪ {∞}.

54up to a contractible family of choices
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By pushing forward along ιVU , we get the factorization algebra

ιVU ∗(ÂV ) ∈ FacÛ (FaclcRm−n).

Note that by definition of factorization homology for factorization algebras we have:

(114) ιVU ∗(ÂV )(Û) ∼= p∗ ◦ ιVU ∗(ÂV ) ∼= p∗(ÂV ) ∼= ÂV (V̂ )

We wish to define a quasi-isomorphism γVU : ιVU ∗(ÂV ) −→ ÂU of factorization

algebras over Û .

To do this, we consider the cover of Û given consisting of all opens W ⊂ U ⊂ Û
and all opens which are the complement Û \D of a compact disk D. We note

Lemma 8.34. Let D be an open subset of Û .

(1) If D ⊂ U , then ιVU ∗(ÂV )(D) = ÂV (D) = A(D) = ÂV (D);

(2) if D = Û \D, then ιVU ∗(ÂV )(D) = ÂV
(
V̂ \D

) ∼= k
(
V̂ \D

)
= k.

Proof. Choose homeomorphisms φ : Rn '→ U and ψ : Rn '→ V so that ψ identifies V
with Dn and we are left to the case where φ : Rn → U is a sub-disk of Dn. We have
a factorizing and stable by finite intersections basis UÛ (as in Proposition 8.25).

The basis UÛ is defined as the set consisting of all opens W ⊂ U ⊂ Û and all opens

which are the complement Û \ φ(D) of the image by φ of a non-empty Euclidean
compact disk D ⊂ Rn whose center is 0.

Now, the lemma is a consequence of the Definition of the pushforward ιVU ∗(Âψ),
Definition 8.23 and Proposition 8.25.(1) and (2). �

We now define the aforementioned map γVU .

Lemma 8.35. Let W be in the cover WÛ as defined in Definition 8.30. (1); that

is either W ⊂ U ⊂ Û or W is the complement Û \D of a compact disk55 D ⊂ U .
Let

γVU (W ) : ιVU ∗(ÂV )(W ) −→ ÂU (W )

be the augmented Em−n-algebra map defined (using the identifications provided by
Lemma 8.34),

• as the identity map

γVU (W ) : ιVU ∗(ÂV )(W ) = A(W )
id−→ A(W ) = ÂU (W )

if W ⊂ U ;

• and, if W = Û \ D, D ⊂ U a compact disk, as the restriction of the

augmentation of ÂV :

γVU (W ) : ιVU ∗(ÂV )(W ) = ÂV
(
V̂ \D

) ε̂
(
V̂ \D

)
−−−−−→ k

(
V̂ \D

)
= k = ÂU (W )

(where the last equality follows from Proposition 8.25 and ε̂ is the augmen-
tation map (110)).

(1) The collection
(
γVU (W )

)
W∈UÛ

is a map of WÛ -factorization algebras.

55by a compact disk in U , we mean the image in U of an embedding of the closed unit Euclidean
disk
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(2) The collection
(
γVU (W )

)
W∈UÛ

has an unique56 extension into a map γVU :

ιVU ∗(ÂV ) −→ ÂU of factorization algebras over Û .

(3) γVU is further a map of augmented factorization algebras (with respect to
the augmentation (110)).

(4) The map ιVU ∗(ÂV )
γVU−→ ÂU is an equivalence of factorization algebras.

Proof. We need to prove that, for any pairwise disjoint open W1, . . . ,Wr ∈ WÛ
lying in Z ∈ WÛ , the following diagram

(115)
r⊗
i=1

ιVU ∗(ÂV )(Wi)

r⊗
i=1

γVU (Wi)

��

ρW1,...,Wr,Z // ιVU ∗(ÂV )(Z)

r⊗
i=1

γVU (Z)

��
r⊗
i=1

ÂU (Wi)
ρW1,...,Wr,Z // ÂU (Z)

is commutative.
If Z ⊂ U (and consequently all the Wi ⊂ U as well), then this is a trivial

consequence of Lemma 8.34.(1). Let Z = Û \ K with K a compact disk in U .
We may assume W1, . . . ,Wj ∈ U with j = r − 1 or j = r, and the remaining
Wj+1, . . . ,Wr (note that there may be only one or zero such W`) to be of the form

Û\T where T is a compact disk in U . Unfolding the definition of γVU using statement
(3) in Proposition 8.25 and Lemma 8.34, we obtain that the diagram (115) can be
rewritten as the following diagram
(116)( j⊗

i=1

ÂV (Wi)
)
⊗
( r⊗
i=j+1

ÂV (V̂ \ T
)

( j⊗
i=1

id
)
⊗
( r⊗
i=j+1

ε̂(V̂ \T )
)
��

ρW1,...,Wr,Z //
r⊗
i=1

ε̂(Wi)

**

ÂV
(
V̂ \ T

)
ε̂(V̂ \K)

��( j⊗
i=1

ÂV (Wi)
)
⊗
( r⊗
i=j+1

k
) ( j⊗

i=1
ε̂(Wi)

)
⊗
( r⊗
i=j+1

id
) //

r⊗
i=1

k
ρkW1,...,Wr,Z // k

and that further the lower left triangle in diagram (116) is commutative. The
commutativity of the upper right part of diagram (116) is given by the fact that

ε̂ : ÂV → k is a map of factorization algebras. This proves that the (γVU (W )) forms
a map of WÛ -factorization algebras.

Now, note that WÛ contains a factorizing, stable by finite intersections, basis
UÛ of opens. Indeed, let φ : Rn → U be an homeomorphism. Then the cover UÛ
consists of all opens W ⊂ U and all opens Û \φ(K) where K is a compact Euclidean
ball centered at 0 in Rn. The fact that the collection (γVU (W )) extends uniquely to
a map of factorization algebras is hence a consequence of Proposition 2.28.

Indeed, if F ∈ FacÛ and D ⊂ Û is an open set, then the Čech complex

Č(DUÛ ,F) ∼= F(D) where DUÛ is the cover of D consisting of all opens of UÛ
which lies in D. In particular any map of UÛ -factorization algebras defines a map

56up to a contractible family of choices
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between the associated Čech complexes. This construction is the inverse of the
restriction functors from factorization algebras to UÛ -factorization algebras.

From above, to prove statement.(3), it is sufficient to check that γVU is a map
of augmented factorization algebras on the opens of UÛ . If W ⊂ U , then there is

nothing to prove since γVU (W ) is the identity. If W = Û \ φ(K) then k = Âφ(W )
and the augmentation map (110) is the identity k → k and there is nothing left to
prove.

Finally, again by Proposition 2.28, to prove that ιVU ∗(Âψ)
γVU−→ Âφ is an equiva-

lence of factorization algebras, it is sufficient to prove that its restriction γVU (W ) on
any open W ∈ UÛ of the above basis is a quasi-isomorphism. The only case which

needs a proof is when W = Û \D with D = φ(K) where K is a compact Euclidean
ball centered at 0 in Rn. By Proposition 8.25.(2) and diagram (111), we have a
commutative diagram

ιVU ∗(ÂV )(W ) = ÂV
(
V̂ \D

) γVU (W ) //

ε̂
(
V̂ \D

)
∼=
��

k
(
V̂ \D

)
= k

k

id

33

from which we deduce that γVU (W ) is a quasi-isomorphism. Hence Claim.(4) of the
Lemma holds. �

Passing to factorization homology, i.e. evaluating on Û , the factorization algebra

map γVU : ιVU ∗(ÂV ) −→ ÂU induces a map γVU (Û) : ιVU ∗(ÂV )(Û) −→ ÂU (Û).
Composing this map with the string of equivalences (114), we get the following
map of (augmented) Em−n-algebras

(117) γ̃VU : p∗(ÂV ) ∼= Âψ(V̂ ) ∼= ιVU ∗(ÂV )
γVU (Û)−→ ÂU ∼= p∗(ÂU )

between the factorization homology of ÂV and the factorization homology of ÂU .

We now define the factorization coalgebra (Definition 2.12) U 7→ Bar(n)(A)(U)
we have been seeking for.

Definition 8.36. Let ε : A → k be a map of locally constant factorization algebras
over Rm.

• Let U ⊂ Rn be a disk. We define Bar(n)(A)(U) := p∗(ÂU ) ∈ Em−n-Algaug

the factorization homology of the Factorization algebra

AU on Û from Definition 8.32.
• Let U1, . . . , Ur be a family pairwise disjoint open sub-disks of an open disk
V ⊂ Rn. We define the structure map δU1,...,Ur,V : Bar(n)(A)(V ) −→⊗r

i=1Bar
(n)(A)(Ui) to be the following maps in Em−n-Algaug:

δU1,...,Ur,V : Bar(n)(A)(V ) = p∗(ÂV )
r⊗
i=1

γ̃VUi
−→

r⊗
i=1

p∗(ÂUi) = Bar(n)(A)(U1)⊗ · · · ⊗Bar(n)(A)(Ur).

Here the maps γ̃VUi are the compositions (117).
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ε
id

idid

U1

U3

U2

V

Figure 3. The map Bar(n)(A)(V ) → Bar(n)(A)(U1) ⊗
Bar(n)(A)(U2)⊗Bar(n)(A)(U3)

Let ε : A→ k be a map of Em-algebras (with m ≥ n) and assume it is represented57

by the factorization algebra map ε : A → k. In that case, we also denote

Bar(n)(A)(U) := Bar(n)(A)(U).

Unfolding the definition, the map δU1,...,Ur,V is essentially the map of factor-
ization algebra given by the identity on each Ui and the augmentation in their
complement as is pictured in Figure 3 (in the case r = 3).

Theorem 8.37. Let 0 ≤ n ≤ m.

(1) There is an ∞-functor

Bar(n) : Faclc,augRn −→ coFaclcRn
(

Faclc,augRm−n

)
from (∞, 1)-category of locally constant augmented factorization algebras
over Rm to the (∞, 1)-category of locally constant cofactorization algebras58

over Rn with values in locally constant augmented factorization algebras
over Rm−n.

The functor Bar(n) is given by the rule φ 7→ Bar(n)(A)(U) together with
the structure maps δU1,...,Ur,V of Definition 8.36.

(2) let ε : A → k be an augmented Em-algebra. There is an natural equiva-

lence Bar(n)(A)
'−→ Bar(n)(A)(Rn) between the iterated Bar construction

of A (in the sense of Definition 8.15) and the cofactorization homology of
Bar(n)(A).

In particular, the iterated Bar construction Bar(n)(A) has an natural
structure of En-coalgebra in Em−n-Algaug and the iterated Bar construction
functor (Definition 8.15) lifts as a functor of (∞, 1)-categories

Bar(n) : Em-Algaug −→ En-coAlg
(
Em−n-Algaug

)
.

57in other words A(W ) ∼=
∫
W A for any open subset W ⊂ Rn

58in the sense of Definition 2.12, that is a locally constant N(Disk)(Rn)-coalgebra
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Proof. First note that Bar(n)(A)(Rn) = p∗(Â) where Â is the factorization algebra
on Rn of Definition 8.23. Thus, by Lemma 8.24, we have an natural (with respect
to maps of augmented Em-algebras) equivalence

Bar(n)(A)
'−→ p∗(Â) = Bar(n)(A)(Rn).

Hence, part (2) in the Theorem is a corollary of part (1) and the relationship
between factorization (co)-algebras an E`-(co)-algebras, namely Theorem 2.29 and
Proposition 2.25.

We now prove part (1). The functoriality of U 7→ Bar(n)(A)(U) is a straightfor-

ward consequence of the functoriality of p∗(ÂU ) and of the transformations γVU of
Lemma 8.35.

Now, recall that each of the maps γ̃VUi (defined as the composition (117)) are
augmented Em−n-algebras maps. Hence so is the map

δU1,...,Ur,V : Bar(n)(A)(V ) −→ Bar(n)(A)(U1)⊗ · · · ⊗Bar(n)(A)(Ur)

from Definition 8.36.
The invariance under the symmetric group action of the structure map follows

right away from its definition. We also need to check the naturality of the structure
maps with respect to inclusions of disks, i.e., the identity:

(118)
(
δW 1

1 ,...,W
1
i1
,U1
⊗· · ·⊗δW r

1 ,...,W
r
ir
,Ur

)
◦δU1,...,Ur,V = δW 1

1 ,...,W
1
i1
,...,W r

1 ,...,W
r
ir
,V ,

which has to hold for any families of pairwise disjoint open sub-disks W j
i ⊂ Uj

(where j = 1 . . . r). Unfolding Definition 8.36, we see that the identity (118) follows
from the following identity

(119) γ̃
Uj

W j
i

◦ ιVUj ∗
(
γ̃VUj
)

= γ̃V
W j
i

if it holds for all inclusions W j
i ⊂ Uj ⊂ V of open subsets. It is enough to check

this identity for the underlying factorization algebras maps, that is too prove:

(120) γ
Uj

W j
i

◦ ιVUj ∗
(
γVUj
)

= γV
W j
i

.

Let θji : Rn → W j
i and φj : Rn '→ Uj ⊂ V be homeomorphisms. In view of

Lemma 8.35, it is sufficient to check the above identity (120) on the factorizing

cover U
Ŵ j
i

consisting of all opens in W j
i and all complements of θji (D) where D is a

compact Euclidean disk. Both sides of identity (120) are equal to the identity when

restricted to an open subsets of W j
i and to the (restriction of the) augmentation in

the second case since γVUj is a map of augmented algebras (Lemma 8.35).

It remains to prove the locally constant condition. That is we need to see that
for an open sub-disk U ↪→ V of a disk V , the map (117)

γ̃VU : Bar(n)(A)(V ) = p∗(ÂV ) ∼= Âψ(V̂ ) ∼= ιVU ∗(ÂV )

γVU (Û)−−−−→ ÂU ∼= p∗(ÂU ) = Bar(n)(A)(U)

is a quasi-isomorphism. That γVU (Û) is a quasi-isomorphism is given by Lemma 8.35.(4).
Hence, so is γ̃VU .

We have proved that the rule φ 7→ Bar(n)(A)(φ) (see construction (8.36)) is a
locally constant N(Disk(Rn))-coalgebra object in Em−n-algebras. Consequently,
the iterated Bar construction given by Definition 8.15 is a functor from augmented
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Em-algebras to En-coAlg
(
Em−n-Algaug

)
. By Proposition 8.14, this functor agrees

(in the (∞, 1)-category Em−n-Alg
aug) with the one given in Section 8.1. The iden-

tification of the two En-coalgebras structure is done as in the proof of Proposi-
tion 6.15. �

Remark 8.38 (sketch of a variant). Let A be an En-algebra induced by a factor-

ization algebra A on Rn. The factorization algebra Â on Sn (from Definition 8.23)
is obtained by pushing forward the factorization algebra (A, k) on the stratified
closed disk In from Definition 8.18. Further, for convex bounded open subsets of
Rn, we can think of the iterated Bar construction of A, restricted on V as a strati-
fied factorization algebra D 7→ Bar(n)(A)(D) on the closure V of V (which assigns
the A-En-module k to balls in a neighborhood of the boundary V \ V ). In fact, for

any disk V and any homeomorphism ψ : Rn '→ V , we can construct a factoriza-
tion algebra (Aψ, k) on the stratified closed disk In and the global section of this

factorization algebra is quasi-isomorphic to Bar(n)(A). It is possible to define this
way a locally constant parametrized factorization algebra on Rn (Definition 2.24)

which is equivalent as the one we construct using Â in Theorem 8.37.
The basic idea is that, given sub-disks U1, . . . , Ur in V with homeomorphisms

φi : Rn '→ Ui and an embedding h :
∐r
i=1 Rn → Rn such that ψ ◦ h =

∐r
i=1 φi,

we can construct a locally constant stratified factorization algebra F on In which
is stratified with one open strata given by the union of the disks h(

⋃r
i=1 Rn) and

one closed stratum given by their complement In \h
(⋃r

i=1 Rn
)
. Then F is roughly

defined as the rule which to each ball D inside φ−1
i (Ui) associates

∫
φi(D)

A, and

which associates F(D) = k on the closed strata. The factorization algebra structure
is given by the A-En-module structure of k. The map which is the identity on each
disk D inside the preimage of a Ui and is the augmentation ε : A → k on each
disk in a small neighborhood of the closed strata defines a map of factorization
algebra (Aψ, k) → F , which on the global section is a map from Bar(n)(Aψ) →⊗r

i=1Bar
(n)(Aφi).

Let ε : A → k be a map of augmented locally constant factorization algebras

over Rm and 1 ≤ i, j be such that i + j ≤ m. By Theorem 8.37, we have the ith

Bar construction Bar(i)(A) ∈ coFaclc,augRi

(
Faclc,augRm−i

)
. In particular for every open

set U ∈ Ri, we get an augmented factorization algebra Bar(i)(A)(U) ∈ Faclc,augRm−i
from which, by Theorem 8.37 again, we get

Bar(j)
(
Bar(i)(A)(U)

)
∈ coFaclcRj

(
Faclc,augRm−i−j

)
.

Recall that the structure maps δU1...,Ur,V from Definition 8.36 (associated to the

functor Bar(i) and sub-disks Ui, V ) are as the tensor product
⊗r

i=1 γ̃
V
Ui

where the

γ̃VUi are maps of augmented factorization algebras over Rm−i. Hence we get a map

(121)

r⊗
i=1

Bar(j)
(
γ̃VUi
)

: Bar(j)
(
Bar(i)(A)(V )

)
−→ Bar(j)

(
Bar(i)(A)(U1)

)
⊗ · · · ⊗ Bar(j)

(
Bar(i)(A)(Ur)

)
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in coFaclcRj
(

Faclc,augRm−i−j

)
. The proof of Theorem 8.37 and the proof of Lemma 8.17

shows that

Proposition 8.39. Let ε : A → k be a map of augmented locally constant factor-
ization algebras over Rm and 1 ≤ i, j be such that i+ j ≤ m.

(1) The structure maps (121) make Bar(j)
(
Bar(i)(A)

)
an object of the (∞, 1)-

category coFaclcRi
(

coFaclcRj
(

Faclc,augRm−i−j

))
, functorially in A: in other words

we have a functor

Bar(j) ◦ Bar(i) : Faclc,augRm −→ coFaclcRi
(

coFaclcRj
(

Faclc,augRm−i−j

))
.

(2) There is a commutative diagram of functors:

Faclc,augRm

Bar(j)◦Bar(i) **

Bar(i+j) // coFaclcRi+j
(

Faclc,augRm−i−j

)
' π∗

��

coFaclcRi
(

coFaclcRj
(

Faclc,augRm−i−j

))
where the left vertical arrow is the pushforward.

In other words, through Dunn isomorphism, the proposition states that the
functor Bar(n) is the same as the n-times iterated Bar construction Bar(1) ◦ · · · ◦
Bar(1).

We finish this section by comparing the iterated Bar construction of Theo-
rem 8.37 with centralizers and the construction of § 8.1.

Proposition 8.40. Let ε : A→ k be an augmented Em-algebra and 0 ≤ n ≤ m.

(1) The dual RHom(Bar(m)(A), k), endowed with the Em-algebra structure
dual to the Em-coalgebra structure of Bar(m)(A) (given by Theorem 8.37.(2)),

is the centralizer z(A
ε→ k) of the augmentation (see § 6.3).

(2) Bar(1)(A) is equivalent as an E1-coalgebra to the standard (§ 8.1) Bar
construction Barstd(A) and Bar(n)(A) is equivalent to the iterated Bar

constructions of [F1] (in the ∞-category En-coAlg
(
Em−n-Algaug

)
).

(3) If m =∞, the iterated Bar functor

Bar(n) : E∞-Algaug −→ En-coAlg
(
E∞-Algaug

)
given by Theorem 8.37 is naturally equivalent to the one obtained in § 8.1
(and in particular Theorem 8.9).

Proof. Dualizing the construction of the locally constant N(Disk(Rn))-coalgebra
structure shows that the dual RHom(Bar(n)(A), k) of the Bar construction has a
locally constant N(Disk(Rn))-algebra structure whose global section gives us the
Em-algebra structure on RHom(Bar(m)(A), k) asserted in Claim (1)

By Proposition 2.28, it is enough to check that this dual structure coincides with
the one given in Theorem 6.8 on the factorizing basis CVX of bounded convex open
subsets of Rn. Recall

∫
V
k ∼= k(V ) = k for any open V . For U ∈ CVX with center
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∗U , we have have an natural equivalence
(122)

Bar(m)(A)(U) ∼= p∗(ÂU ) ∼=
∫
U

A
L
⊗∫

U\{∗U}
A

∫
Û\{∗U}

k ∼=
∫
U

A
L
⊗∫

U\{∗U}
A
k

given by Lemma 8.24, Proposition 8.25 and Lemma 8.22 (this also follows from

Remark 8.33 applied to any φ : Rn '−→ U such that φ(0) = ∗U ). It follows that

RHom(Bar(m)(A)(U), k(U)) ∼= RHomleft∫
U\{∗U}

A

(∫
U

A,

∫
U

k
)

(123)

∼= RHomEnA
(
A, k

)
(U)

where the last line is from Step 2, § 6.2.2 and the A-En-module structure on k
is given by the augmentation ε : A → k. To conclude that the dual of U 7→
Bar(m)(A)(U) is the factorization algebra of Theorem 6.8, it remains to the compare
the dual of the structure maps of Definition 8.36 with the ones in § 6.2.2.

Let U1, . . . , Ur be convex open sets lying inside a bounded convex open set V .
By Lemma 8.35, the dual RHom(γVUi , k) is a factorization algebra map on Ui which

is given by the augmentation ε̂ on every open subset W = Û \ D which is the
complement of a compact Euclidean disks containing the ∗i. Further, on any open
subset W ′ of such a W , the image under the equivalence (123) of RHom(γVUi , k)
evaluated on W ′, is a section in MapFaclcUi∗i

(A|Ui ,B|Ui) (see § 6.2.2) which, again,

is simply given by the augmentation.
A contrario, on any open set W lying inside Ui, the dual RHom(γVUi , k) is the

identity. Thus, its image under the equivalence (123) on any open subset ∗i ⊂W ⊂
Ui, is just the map taking a global section f ∈ RHomEnA

(
A, k

)
(Ui) to its restriction

on W .
Since δU1,...,Ur is obtained by tensor product of the γVUi (Definition 8.36), it follows

that the dual of δU1,...,Ur coincides with the structure maps ρU1,d...,Ur,V given by
Formula (37) on the cover UU1,...,Ur,V . This proves Claim (1).

That the algebraic of Bar(n)(A) agrees with the one in [F1] follows from Dunn
Theorem (see [L-HA, F1] or Theorem 2.30) once we know that Bar(1)(A) is equiv-
alent, as an E1-coalgebra, to the standard Bar construction Barstd(A). By homo-
topy invariance, we may assume that A is a differential graded associative algebra.
By Lemma 8.13, we have a natural equivalence Bar(A) ∼= Barstd(A) and fur-
ther the (two constructions) of the Bar construction computes the derived functor
k ⊗L

A k. The coalgebra structure of Barstd(A) is induced by the comultiplication
δ : Barstd(A)→ Barstd(A)⊗Barstd(A) which realized the following map of derived
functors (in k-Mod∞):

(124) δ : k ⊗L
A k
∼= k ⊗L

A A⊗L
A k

id⊗L
Aε⊗

L
Aid−→ k ⊗L

A k ⊗L
A k
∼=
(
k ⊗L

A k
)⊗2

.

The construction (105) can be rewritten as

Bar(A) ∼= k
L
⊗
A

∫
I

A
L
⊗
A
k

using the natural A⊗Aop ∼=
∫
S0 A-module structure of

∫
I
A. Now the E1-coalgebra

structure of Bar(A) is given by the inclusion of two disjoint open intervals I1
and I2 inside I. We denote J1, J2, J3 the three disjoint intervals whose union is
the complement I \ (I1 ∪ I2). Unfolding the definition of the map δI1,I2,I given
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by Definition 8.36 and Lemma 8.35, using excision for factorization homology
(see [L-HA, F1, GTZ2, AFT]), we find that, δI1,I2,I is the composition

(125) Bar(A) ∼= k
L
⊗
A

∫
I

A
L
⊗
A
k −→ k

L
⊗
A

∫
J1

A
L
⊗
A

∫
I1

A
L
⊗
A

∫
J2

A
L
⊗
A

∫
I2

A
L
⊗
A

∫
J3

A
L
⊗
A
k

id⊗L
Aε⊗

L
Aid⊗

L
Aε⊗

L
Aid⊗

L
Aε⊗

L
Aid−→ k

L
⊗
A

∫
I1

A
L
⊗
A
k

L
⊗
A

∫
I2

A
L
⊗
A
k ∼= Bar(A)⊗Bar(A).

Hence, the underlying coproducts of the E1-coalgebra structure on Bar(A) realize
the map (124). Thus, they induce the E1-coalgebra structure of Barstd(A) under
the equivalence given by Lemma 8.13.

We are left to prove Claim (3). By Proposition 8.14 and Lemma 8.17, we know
that the iterated bar functor Bar(n) from Theorem 8.37 coincides in E∞-Algaug

with the the one obtained in § 8.1.
We need to compare the En-coalgebra structures. By Lemma 6.16, we are left

to compare the structure maps δc1,...,cr,Rn :
⊗r

i=1Bar
(n)(A)(ci)→ Bar(n)(A)(Rn)

with the maps (99) giving rise to the structure in Theorem 8.9.
Further, from equivalence (122) above, Proposition 8.8 and its proof we obtain

a commutative diagram of equivalences

(126) p∗(ÂU ) = Bar(n)(A)(U)
∼= // CHÛ (A)

L
⊗
A
k ∼= CHÛ (A, k)

∫
U
A

L
⊗∫

U\{∗U}
A
k

∼= //

∼=

OO

CHU (A)
L
⊗

CHU\{∗U}(A)
k

∼=

OO

for every convex open set (in particular cube) U ⊂ Rn. The lower arrow of the dia-
gram is the tensor product of the equivalences between factorization and Hochschild
homology given by Theorem 3.13.

We wish to analyze the structure maps δU1,...,Ur,V (where all the sets Ui’s, V are
convex) under this equivalence. For any i = 1 . . . r, from the above diagram (126)
and the definition of the map (117), we get the commutative diagrams

(127) p∗(ÂV )

∼=
��

γ̃VUi // p∗(ÂUi)

∼=
��

CHV̂ (A)
L
⊗
A
k

(
ιVUi

)
∗
⊗id

// CH
Ûi

(A)
L
⊗
A
k

where ιVUi : V̂ → Ûi is the map (113) which collapses the complement of Ui in V̂ to
a point.

Recall that δU1,...,Ur,V is the tensor product
⊗
γ̃VUi (Definition 8.36), tensoring

the commutative diagrams (127) applied to cubes U1, . . . , Ur inside V = Rn, we get
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the commutative diagram

Bar(n)(A)(Rn) = p∗(ÂRn)

∼=
��

δU1,...,Ur,Rn //
r⊗
i=1

p∗(ÂUi) =
r⊗
i=1

Bar(n)(A)(Ui)

∼=
��

CHSn(A)
L
⊗
A
k

pinchS
n,r
∗ (U1,...,Ur) //

r⊗
i=1

(
CH

Ûi
(A)

L
⊗
A
k
)
∼=
(
CHSn(A, k)

)⊗r
where the lower map is the pinching map (99) applied to the cubes U1, . . . , Ur.
Together with Lemma 6.16, this proves that the En-coalgebra structure given by
Theorem 8.9 is the same as the one from Theorem 8.37. �

Remark 8.41 (En-analogues of (homotopy) bialgebras). The category of (dif-
ferential graded) bialgebras is the same as the category coAlg(Alg) of (differential
graded) coalgebra objects in the category of (differential graded) algebras.

In particular, the (∞, 1)-category E1-coAlg
(
E1-Alg

)
is equivalent to the (∞, 1)-

category of (differential graded) bialgebras in k-Mod∞.
We thus think of Ep-coAlg

(
Eq-Alg

)
as analogues of bialgebras with some com-

mutativity and cocommutativity conditions lying in between (dg-)bialgebras and
(dg-)commutative and cocommutative bialgebras.

Note that in characteristic zero, by choice of a formality isomorphism Pd ∼=
Ed, a model for the ∞-category Ed-coAlg

(
E1-Alg

)
is given by the ∞-category of

(homotopy) d-bialgebras considered by Tamarkin [Ta2].
Also, Proposition 8.37 implies that the Bar construction of an E2-algebra is

naturally a (homotopy) bialgebra. It would be interesting to relate this result with
a ”somehow dual” result of Kadeishvili [Ka] stating that the cobar construction
of a (dg-)bialgebra has an natural structure of homotopy Gerstenhaber algebra
structure, hence of E2-algebras in characteristic zero.
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(2009), Birkhäuser Basel.
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